Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2021

Electronic supplementary information

Crystal structure, lattice dynamics and superexchange in MAgF₃ 1D antiferromagnets (M = K, Rb, Cs) and Rb₃Ag₂F₇ Ruddlesden-Popper phase

Kacper Koteras,1* Jakub Gawraczyński,1 Gašper Tavčar,2 Zoran Mazej,2 Wojciech Grochala1

¹ Centre of New Technologies, University of Warsaw, S. Banacha 2C, 02-097 Warsaw, Poland ² Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia

Figure S1. Deconvoluted Raman spectrum of CsAgF₃.

Figure S2. Deconvoluted Raman spectrum of RbAgF₃.

Figure S3. Different Raman spectra collected for of RbAgF₃.

Figure S4. Full set of Raman spectra at low temperature for RbAgF3.

Figure S5. X-ray diffraction pattern of $RbAgF_3$ sample containing novel $Rb_3Ag_2F_7$ phase and the results of the Rietveld refinement. Bottom part shows simulated Bragg positions for each present phase (from top to bottom: $RbAgF_3$, AgF and $Rb_3Ag_2F_7$).

Formula	RbAgF ₃		
Colour	brown		
Space group	<i>I4/mcm</i> (No. 140)		
Z	4		
V /Å ³	338.991(6)		
a /Å	6.33855(6)		
b /Å	6.33855(6)		
c /Å	8.43740(11)		
α /°	90		
β /°	90		
γ /°	90		
Positions	Rb1 0.00000 0.00000 0.25000 Ag1 0.00000 0.50000 0.00000 F1 0.00000 0.50000 0.25000 F2 0.240(4) 0.740(4) 0.00000		
Reliability factors	Not corrected for background (all data) $R_p = 0.84 \%$ $R_{wp} = 1.78 \%$ Corrected for background (all data) $cR_p = 27.86 \%$ $cR_{wp} = 15.16 \%$ R Bragg factor (this phase) $R_{Bragg} = 9.53 \%$		
Atomic distances /Å	Ag-F (apical) 2.10935(3) Ag-F (equatorial) 2.33(3) 2.15(3)		

Table S1. Crystallographic data for RbAgF₃.

RbAgF ₃ Pnma (HSE06)		RbAgF ₃ <i>I</i> 4/ <i>mcm</i> (HSE06)		CsAgF ₃ <i>I</i> 4/ <i>mcm</i> (HSE06)	
B _{2u}	471	A _{2u}	484	Eu	450
Au	470	B _{2g}	472	B ₂	449
B ₃ g	467	E _u	467	A20	449
B ₁ ,	464	Ala	381	Ala	370
Ba	464	B ₂	312	R ₂	302
	467	B _{2g}	233	B _{2g}	227
A _u	402		184	D _{lu}	102
D _{2u}	401	L _g	104	A _{2u}	193
B _{2g}	449	A _{2u}	105	E _u	186
B _{1g}	414	E _u	181	E _g	186
Ag	380	Eu	159	Eu	162
B _{1g}	365	A _{2g}	144	B _{1u}	155
B _{3g}	303	B _{1u}	139	A _{2g}	150
B _{3u}	271	Eu	124	Eu	118
B _{1u}	240	A _{2g}	69	B _{1g}	95
B_{3u}	205	A _{2u}	67	Eg	88
A_{g}	201	Eu	66	A_{2u}	72
B_{2g}	200	Eg	65	Eu	72
B _{1u}	199	Eg	26	A _{2g}	65
B _{2u}	186	A _{2u}	-1	Eg	56
B _{2g}	182	Eu	-2	A _{2v}	-5
B _{1u}	175	B _{1g}	-39	En	-5
B ₃ ,	174			ч	-
A	174				
A	164				
Ba	167				
Ba	161				
B.	157				
D _{1u}	157				
D _{3g}	133				
	140				
Au	140				
B _{1g}	139				
B _{1u}	139				
B _{3g}	134				
B _{3u}	134				
B _{3u}	129				
B _{2g}	125				
B _{1u}	118				
Ag	98				
Ag	87				
B _{1g}	86				
B _{1u}	82				
Ag	78				
B _{3g}	77				
A _u	76				
B _{3u}	76				
B ₂₀	74				
B ₂ _σ	73				
B ₂₁₁	71				
Ag	69				
B ₂	68				
B ₁	65				
Δ	64				
R.	60				
D _{2g}	50				
D _{1g}	30				
A _u	49				
B _{2g}	34				
	33				
B _{2u}	-1				
$ $ B_{1u}	-1				1

Table S2. Theoretically calculated modes.

Cif files of structures used in lattice dynamics calculations

RbAgF₃ Pnma (HSE06) data findsym-output audit creation method FINDSYM _cell_length_a 6.2633870000 _cell_length_b 8.3574660000 cell length c 6.3444310000 cell angle alpha 90.000000000 cell angle beta 90.0000000000 cell angle gamma 90.0000000000 _cell_volume 332.1058636297 _symmetry_space_group_name_H-M "P 21/n 21/m 21/a" _space_group.reference_setting '062:-P 2ac 2n' space group.transform Pp abc a,b,c;0,0,0 loop _space_group_symop_id _space_group_symop_operation_xyz 1 x,y,z 2 x+1/2,-y+1/2,-z+1/2 3 -x,y+1/2,-z 4 -x+1/2,-y,z+1/2 5 -x,-y,-z 6 -x+1/2,y+1/2,z+1/2 7 x,-y+1/2,z 8 x+1/2,y,-z+1/2 loop _atom_site_label _atom_site_type_symbol atom_site_symmetry_multiplicity atom_site_Wyckoff_label atom site fract x _atom_site_fract_y _atom_site_fract_z _atom_site_occupancy atom_site_fract_symmform Ag1 Ag 4 a 0.0000 0.00000 0.00000 1.00000 0.0.0 Rb1 Rb 4 c 0.00381 0.25000 0.49913 1.00000 Dx,0,Dz F1 F 4 c 0.49600 0.25000 0.45836 1.00000 Dx,0,Dz F2 F 8 d 0.26645 -0.02118 0.27814 1.00000 Dx,Dy,Dz

RbAgF₃ I4/mcm (HSE06)

data_findsym-output _audit_creation_method FINDSYM

_cell_length_a 6.2963000000 _cell_length_b 6.2963000000 _cell_length_c 8.4031760000 _cell_angle_alpha 90.0000000000 _cell_angle_beta 90.0000000000 _cell_angle_gamma 90.0000000000 _cell_volume 333.1304144144

_symmetry_space_group_name_H-M "I 4/m 2/c 2/m" _symmetry_Int_Tables_number 140 _space_group.reference_setting '140:-I 4 2c' _space_group.transform_Pp_abc a,b,c;0,0,0

loop_ _space_group_symop_id _space_group_symop_operation_xyz 1 x,y,z 2 x,-y,-z+1/2 3 -x,y,-z+1/2 4 -x,-y,z 5 -y,-x,-z+1/2 6 -y,x,z 7 y,-x,z 8 y,x,-z+1/2 9 -x,-y,-z 10 - x, y, z + 1/211 x,-y,z+1/2 12 x,y,-z 13 y,x,z+1/2 14 y,-x,-z 15 -y,x,-z 16 - y, -x, z + 1/217 x+1/2,y+1/2,z+1/2 18 x+1/2,-y+1/2,-z 19 -x+1/2,y+1/2,-z 20 -x+1/2,-y+1/2,z+1/2 21 -y+1/2,-x+1/2,-z 22 -y+1/2,x+1/2,z+1/2 23 y+1/2,-x+1/2,z+1/2 24 y+1/2,x+1/2,-z 25 -x+1/2,-y+1/2,-z+1/2 26 -x+1/2,y+1/2,z 27 x+1/2,-y+1/2,z 28 x+1/2,y+1/2,-z+1/2 29 y+1/2,x+1/2,z 30 y+1/2,-x+1/2,-z+1/2 31 -y+1/2,x+1/2,-z+1/2 32 -y+1/2,-x+1/2,z

loop_ _atom_site_label _atom_site_type_symbol _atom_site_symmetry_multiplicity _atom_site_symmetry_multiplicity _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_occupancy _atom_site_fract_symmform Ag1 Ag 4 d 0.00000 0.50000 0.00000 1.00000 0,0,0 Rb1 Rb 4 a 0.00000 0.50000 0.25000 1.00000 0,0,0 F1 F 4 b 0.00000 0.50000 0.25000 1.00000 0,0,0 F2 F 8 h 0.22870 0.72870 0.00000 1.00000 Dx,Dx,0

CsAgF₃ I4/mcm (HSE06)

data_findsym-output _audit_creation_method FINDSYM

_cell_length_a 6.4411370000 _cell_length_b 6.4411370000 _cell_length_c 8.4690630000 _cell_angle_alpha 90.0000000000 _cell_angle_beta 90.0000000000 _cell_angle_gamma 90.0000000000 _cell_volume 351.3665678866

_symmetry_space_group_name_H-M "I 4/m 2/c 2/m" _symmetry_Int_Tables_number 140 _space_group.reference_setting '140:-I 4 2c' _space_group.transform_Pp_abc a,b,c;0,0,0

loop_ _space_group_symop_id _space_group_symop_operation_xyz 1 x,y,z 2 x,-y,-z+1/2 3 -x,y,-z+1/2 4 -x,-y,z 5 -y,-x,-z+1/2 6 -y,x,z 7 y,-x,z 8 y,x,-z+1/2 9 -x,-y,-z 10 - x, y, z + 1/211 x,-y,z+1/2 12 x,y,-z 13 y,x,z+1/2 14 y,-x,-z 15 -y,x,-z 16 -y,-x,z+1/2 17 x+1/2,y+1/2,z+1/2 18 x+1/2,-y+1/2,-z 19 -x+1/2,y+1/2,-z 20 -x+1/2,-y+1/2,z+1/2 21 -y+1/2,-x+1/2,-z 22 -y+1/2,x+1/2,z+1/2 23 y+1/2,-x+1/2,z+1/2 24 y+1/2,x+1/2,-z 25 -x+1/2,-y+1/2,-z+1/2 26 -x+1/2,y+1/2,z 27 x+1/2,-y+1/2,z 28 x+1/2,y+1/2,-z+1/2 29 y+1/2,x+1/2,z 30 y+1/2,-x+1/2,-z+1/2 31 -y+1/2,x+1/2,-z+1/2 32 -y+1/2,-x+1/2,z

loop_

_atom_site_label _atom_site_type_symbol _atom_site_symmetry_multiplicity _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_fract_z _atom_site_fract_symmform Ag1 Ag 4 d 0.00000 0.50000 0.00000 1.00000 0,0,0 Cs1 Cs 4 a 0.00000 0.50000 0.25000 1.00000 0,0,0 F1 F 4 b 0.00000 0.50000 0.25000 1.00000 0,0,0 F2 F 8 h 0.22363 0.72363 0.00000 1.00000 Dx,Dx,0

Rb₃Ag₂F₇ Cmca (GGA+U)

data_findsym-output _audit_creation_method FINDSYM

_cell_length_a 21.6756500000 _cell_length_b 6.2943600000 _cell_length_c 6.2937100000 _cell_angle_alpha 90.00000000000 _cell_angle_beta 90.0000000000 _cell_angle_gamma 90.0000000000 _cell_volume 858.6781972783

_symmetry_space_group_name_H-M "C 2/m 2/c 21/a" _symmetry_Int_Tables_number 64 _space_group.reference_setting '064:-C 2ac 2' _space_group.transform_Pp_abc a,b,c;0,0,0

loop_

_space_group_symop_id _space_group_symop_operation_xyz 1 x,y,z 2 x,-y,-z 3 -x+1/2,y,-z+1/2 4 -x+1/2,-y,z+1/2 5 -x,-y,-z 6 -x,y,z 7 x+1/2,-y,z+1/2 8 x+1/2,y,-z+1/2 9 x+1/2,y+1/2,z 10 x+1/2,-y+1/2,-z 11 -x,y+1/2,-z+1/2 12 -x,-y+1/2,z+1/2 13 -x+1/2,-y+1/2,-z 14 -x+1/2,y+1/2,z 15 x,-y+1/2,z+1/2 16 x,y+1/2,-z+1/2

loop_

_atom_site_label _atom_site_type_symbol _atom_site_symmetry_multiplicity _atom_site_Wyckoff_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_occupancy _atom_site_fract_symmform Ag1 Ag 8 d 0.40284 0.00000 0.00000 1.00000 Dx,0,0 Rb1 Rb 8 d 0.18085 0.00000 0.00000 1.00000 Dx,0,0 Rb2 Rb 4 a 0.00000 0.00000 0.00000 1.00000 Dx,0,0 F1 F 8 d 0.30625 0.00000 0.00000 1.00000 Dx,0,0 F2 F 4 b 0.50000 0.00000 0.00000 1.00000 Dx,0,0 F3 F 16 g 0.09527 0.26940 0.23077 1.00000 Dx,Dy,Dz