Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2022

Supplemental

Effects of grain boundary structure and shape of the solid-liquid interface on the growth direction of the grain boundaries in multicrystalline silicon

Yusuke Fukuda*^a, Kentaro Kutsukake^b, Takuto Kojima^c and Noritaka Usami^a

a. 1 Grad. Eng. Nagoya Univ., Nagoya, Aichi, Japan

E-mail: fukuda.yusuke@d.mbox.nagoya-u.ac.jp

- b. AIP, RIKEN, Nihonbashi, Tokyo, Japan
- c. Grad. Info. Nagoya Univ., Nagoya, Aichi, Japan

Figure S1 (a) An example of the design of the seed crystal to fabricate <100>-designed GBs. (b) An example of the design of the seed crystal to fabricate <110>-designed GBs. 4 GBs can be fabricated by combining 5 seed crystal plates.

Figure S2 (a) An optical image and (b) carrier concentration of an example of the ingot cross-section with <100>-designed GBs. This distribution shows solid-liquid interface shape changes from convex to concave seen from solid with crystal growth proceeds. (c) The results of analyzing the GB plane inclination angle with respect to z-direction (θ) and the angle between the direction perpendicular to the solid-liquid interface and the z-direction (ϕ) for <100> (9 13 0)/(510) GB (green line in Fig. S2(b))

Figures S3 (a) Carrier concentration and the position of four <100>-designed GBs. Quantitative results of θ and φ at GBs from left to right are shown in Fig. S3 (b)~(e), respectively. It is seen that the behavior of the GBs is well explained by our theory in the vicinity of the seed crystal. On the other hand, at the upper position (y = 40 ~ 80 mm), some GBs do not follow our theory as shown in Fig. S3 (b) and (c). The interaction of dislocations with GBs might be related to the phenomena. Notably, only 6 among 17 GBs showed such an unpredictable behavior, and our simple theory explains the majority of GBs.

Figure S4 (a) GB growth direction θ to minimize $\Delta E(\theta)$ when $\varphi = 30^{\circ}$ estimated by assuming a linear model. The GB energy per unit area (E_{tilt}) at $\theta = 0$, and the coefficient of increase of the GB energy per unit area (C) were treated as parameters (E_{tilt} : 0 ~ 1.6, C: 0 ~ 0.02,) for the calculation. (b) The relationship between $\Delta E(\theta)$ and θ at E_{tilt} and C which corresponds to 1, 2, and 3 in Figure S4(a). It is seen that the θ to minimize $\Delta E(\theta)$ varies depending on the combination of E_{tilt} and C

Table1 Relationship between GB structure, GB energy and GB growth direction.

These results suggest that the GB energies of <110>-designed GBs such as Σ 3 and Σ 9 GBs smaller than those of <100>-designed GBs such as Σ 5, Σ 13, and Σ 25 GBs.

Type of GBs	E _{tilt}	Experimental behavior
{111}Σ3	0.051J/m ² by DFT [Ref.S1]	1. θ= 0°, ϕ =7.5°(initial interface)
{221}Σ9	0.32 or 0.29 J/m ² by DFT	1. θ= 0°, ϕ =8°(initial interface)
	[Ref.S2-5]	
{221}Σ9	0.45 J/m ² by molecular-	1. θ= 0°, ϕ =8°(initial interface)
	dynamics simulation	
	techniques using the	
	Stillinger-Weber potential	
	[Ref.S9]	
{310}Σ5	0.42 J/m ² by DFT [Ref.S6-8]	1. θ= 17.6°, ϕ =28°(initial interface)
		2. θ= 11.5°, ϕ =28.3°(initial interface)
{510}Σ13	0.89 J/m ² by molecular-	θ= 17.5°,φ=28.9°(initial interface)
	dynamics simulation	
	techniques using the	
	Stillinger-Weber potential[Ref.	
	S9]	
{710}Σ25	0.84 J/m ² by molecular-	θ = 1.5°, ϕ =6.8°(initial interface)
	dynamics simulation	
	techniques using the	
	Stillinger-Weber potential[Ref.	
	S9]	

Ref. 1* : L. F. Mattheiss and J. R. Patel, Phys. Rev. B,1981, 23, 5384

Ref. 2* : M. Kohyama, R. Yamamoto and M. Doyama, *Physica Status Solidi B-basic Solid State Physics*, 1986, **137**, 11.

Ref. 3* : M. Kohyama, R. Yamamoto and M. Doyama, *Physica Status Solidi B-basic Solid State Physics*, 1986, **138**, 387.

Ref. 4* : R. E. Thomson and D. J. Chadi, Phys. Rev. B,1984, 29, 889

Ref. 5* :D. P. DiVincenzo, O. L. Alerhand, M. Schluter and J. W. Wilkina, Phys. Rev. let., 1986, 56, 1925

- Ref. 6* : M. Kohyama, R. Yamamoto, Y. Ebata, M. Kinoshita, J. Phys., 1988, 21, 3205
- Ref. 7* : J. Hornstra, Physica, 1960, 26, 198
- Ref. 8* : J. J. Bacmann, A. M. Papon, M. Petit and G. Silvestre, Phil. Mag. A, 1985, 51, 697

Ref .9* : F. H. Stillinger and T. A. Weber, Phys. Rev. B **31**, 1985, 5262.