# Three-fold Interpenetrated Metal–Organic Framework as a Multifunctional

## Fluorescent Probe for Detecting 2,4,6-Trinitrophenol, Levofloxacin and L-

## Cystine

Han-Fu Liu,<sup>a</sup> Ye-Tao,<sup>a</sup> Xiao-Huan Qin,<sup>a</sup> Chao-Chen,<sup>a</sup> Fu-Ping Huang,<sup>\*a</sup> Xiu-Qing Zhang,<sup>\*c</sup> and He-Dong Bian<sup>\*ab</sup>

### Author information

### **Corresponding Author**

Fu-Ping Huang\* Email: huangfp2010@163.com Xiu-Qing Zhang\* Email: glutchem@163.com He-Dong Bian\* Email: gxunchem@163.com

## Orcid ID

Han-Fu Liu: https://orcid.org/0000-0002-5418-5560 Ye-Tao: https://orcid.org/0000-0002-5981-3976 Xiao-Huan Qin: https://orcid.org/0000-0002-0492-3895 Chao-Chen: https://orcid.org/0000-0001-9378-7778 Xiu-Qing Zhang: https://orcid.org/0000-0002-2863-8140 Fu-Ping Huang: https://orcid.org/0000-0003-4227-9815 He-Dong Bian: https://orcid.org/0000-0003-4654-9085

a. State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.

b. School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Key Laboratory of Chemistry and Engineering of Forest Products, Nanning, 530008, P. R. China.

c. College of Chemistry and Bioengineering, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin University of Technology, Guilin, P.R. China.

*<sup>†</sup> E-mail: huangfp2010@163.com* (*F.-P. Huang*), *telephone and fax numbers:* +86-0773-2535678; *gxunchem@163.com* (*H.-D. Bian*); *glutchem@163.com* (*X.-Q. Zhang*)

Electronic Supplementary Information (ESI) available: CCDC 2107479.

| SQUEEZE results for 1 are as f                                                                 | ollows:        |        |
|------------------------------------------------------------------------------------------------|----------------|--------|
| {[Zn <sub>3</sub> (TLA) <sub>2</sub> (H <sub>2</sub> O) <sub>2</sub> (4-abpt) <sub>2</sub> ]·5 | $CH_3OH_n$ (2) | 1)     |
| loop_                                                                                          |                |        |
| platon_squeeze_void_nr                                                                         |                |        |
| _platon_squeeze_void_avera                                                                     | ge_x           |        |
| _platon_squeeze_void_avera                                                                     | ge_y           |        |
| _platon_squeeze_void_avera                                                                     | ge_z           |        |
| _platon_squeeze_void_volum                                                                     | ne             |        |
| _platon_squeeze_void_count                                                                     | electrons      |        |
| _platon_squeeze_void_conte                                                                     | nt             |        |
| 1-0.009 0.107 0.750                                                                            | 336            | 90 ' ' |
| 2-0.044 0.393 0.250                                                                            | 336            | 90 ' ' |
| 3 0.000 0.458 0.750                                                                            | 8              | 0''    |
| 4 0.000 0.542 0.250                                                                            | 8              | 0''    |
| 5-0.045 0.607 0.750                                                                            | 336            | 90 ' ' |
| 6-0.010 0.893 0.250                                                                            | 336            | 90 ' ' |
| 7 0.500 0.042 0.250                                                                            | 8              | 0''    |
| 8 0.500 0.958 0.750                                                                            | 8              | 0''    |

That is, SQUEEZE gives 360 electrons/unit cell for the voids. If these electrons are all from CH<sub>3</sub>OH (18 e<sup>-</sup>), each unit cell has  $360/18 = 20 \text{ CH}_3\text{OH}$  molecules, and each formula unit has  $5 \text{ CH}_3\text{OH}$  molecules (since Z = 4). So the suitable formula for this compound should be {[Zn<sub>3</sub>(TLA)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>(4-abpt)<sub>2</sub>]·5CH<sub>3</sub>OH}<sub>n</sub>.



Figure S1. IR spectra of complex 1.

| Identification code                 | 1                                               |
|-------------------------------------|-------------------------------------------------|
| Empirical formula                   | $C_{42}H_{30}N_{12}O_{14}Zn_3$                  |
| Formula weight                      | 1122.89                                         |
| Temperature/K                       | 293(2)                                          |
| Crystal system                      | monoclinic                                      |
| Space group                         | C2/c                                            |
| a/Å                                 | 10.086(2)                                       |
| b/Å                                 | 30.644(6)                                       |
| c/Å                                 | 17.347(4)                                       |
| $\alpha/^{\circ}$                   | 90                                              |
| β/°                                 | 90.27(3)                                        |
| γ/°                                 | 90                                              |
| Volume/Å <sup>3</sup>               | 5361.5(19)                                      |
| Z                                   | 4                                               |
| $\rho_{calc}g/cm^3$                 | 1.391                                           |
| $\mu/mm^{-1}$                       | 1.400                                           |
| F(000)                              | 2272.0                                          |
| Reflections collected               | 15080                                           |
| Independent reflections             | 4700 [ $R_{int} = 0.0692, R_{sigma} = 0.0687$ ] |
| Data/restraints/parameters          | 4700/18/334                                     |
| Goodness-of-fit on F <sup>2</sup>   | 1.031                                           |
| Final R indexes [I>= $2\sigma$ (I)] | $R_1 = 0.0550, wR_2 = 0.1207$                   |
| Final R indexes [all data]          | $R_1 = 0.0740, wR_2 = 0.1279$                   |

Table S1. Crystal data and structure refinement for compound 1 (squeeze)

| Bond Lengths (Å) |                 |             |             |  |  |  |
|------------------|-----------------|-------------|-------------|--|--|--|
| Zn1—O2A          | 2.170 (3)       | Zn1—N6      | 2.128 (4)   |  |  |  |
| Zn1—O3B          | 2.176 (3)       | Zn2—O1A     | 2.008 (3)   |  |  |  |
| Zn1—O4B          | 2.197 (3)       | Zn2—O1      | 2.008 (3)   |  |  |  |
| Zn1—O6           | 1.996 (3)       | Zn2—N1C     | 2.066 (4)   |  |  |  |
| Zn1—O7           | 2.163 (3)       | Zn2—N1D     | 2.066 (4)   |  |  |  |
|                  | Bond Angles (°) |             |             |  |  |  |
| O2A—Zn1—O3B      | 93.70 (12)      | O1A—Zn2—O1  | 144.21 (17) |  |  |  |
| O2A—Zn1—O4B      | 93.00 (11)      | O1—Zn2—N1D  | 97.88 (14)  |  |  |  |
| O3B—Zn1—O4B      | 60.66 (11)      | O1A—Zn2—N1C | 97.88 (14)  |  |  |  |
| O6—Zn1—O2A       | 86.96 (11)      | O1A—Zn2—N1D | 104.07 (14) |  |  |  |
| O6—Zn1—O3B       | 105.53 (12)     | O1—Zn2—N1C  | 104.07 (14) |  |  |  |
| O6—Zn1—O4B       | 166.17 (12)     | N1C—Zn2—N1D | 103.5 (2)   |  |  |  |
| O6—Zn1—O7        | 92.32 (12)      | N6—Zn1—O2A  | 87.32 (13)  |  |  |  |
| O6—Zn1—N6        | 97.98 (13)      | N6—Zn1—O3B  | 156.49 (12) |  |  |  |
| O7—Zn1—O2A       | 178.67 (12)     | N6—Zn1—O4B  | 95.83 (13)  |  |  |  |
| O7—Zn1—O3B       | 85.40 (12)      | N6—Zn1—O7   | 93.89 (14)  |  |  |  |
| O7—Zn1—O4B       | 87.43 (12)      |             |             |  |  |  |

Table S2 Selected Bond Lengths (Å) and Angles (°) for 1

Symmetry codes: (A) -*x*+1, *y*, -*z*+3/2; (B) *x*-1/2, -*y*+1/2, *z*-1/2; (C) *x*-1, -*y*+1, *z*+1/2; (D) -*x*+2, -*y*+1, -*z*+1; (E) *x*+1/2, -*y*+1/2, *z*+1/2.

|                     | ZnO <sub>2</sub> N <sub>2</sub> | ZnO <sub>5</sub> N |  |
|---------------------|---------------------------------|--------------------|--|
| Coordination modes  |                                 |                    |  |
| label               | SS-4                            | OC-6               |  |
| symmetry            | $C_{2v}$                        | Oh                 |  |
| shape               | SeeSaw                          | Octahedron         |  |
| Coloulation results | Distortion( $\tau_{min}$ )      |                    |  |
| Calculation results | Zn1 (2.609)                     | Zn2 (2.285)        |  |

 Table S3. SHAPE analysis of Zn(II) ions in 1.



**Figure S2**. (a) TGA curve of **1**. (b) PXRD patterns of **1** at different temperatures and the simulated one calculated from the single crystal structure analysis.



Figure S3. The PXRD patterns of 1 treated in different solvents.



**Figure S4**. (a) PXRD of compound **1** in DMF for 10 days (b) Fluorescence measurements of **1** immersed into the DMF solvent as the suspensions for 0 min and after 60 min



Figure S5. PXRD patterns of 1 in different pH values in the range of 1-13.



Figure S6. (a) (b)The solid luminescent emissions of ligand H<sub>3</sub>TLA, 4-bpt and 1.

#### Ksv and LOD calculation methods

The quantitative fluorescent quenching efficiency of 1 (for analyte) using the Stern-Völmer (S-V) equation.<sup>1</sup>

$$(I_0/I) = 1 + K_{SV}C$$
 ----- (1) ,

Where I is the fluorescence intensity at TNP concentration of C, and I<sub>0</sub> signifies the initial fluorescence intensity of the MOF.

The quenching constant is indicated by  $K_{SV}$  (M<sup>-1</sup>). A linear curve is obtained at relatively low concentrations of analyte. The equation

$$LOD = 3\sigma/Ksv \dots (2)$$

(where  $\sigma$  signifies the standard deviation of the initial fluorescence intensity of MOF) was used to calculate the detection limit of analyte.

| MOF-based fluorescent materials                                                                                               | Analyte | Quenching             | Detection | Recycle | Ref  |
|-------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------|-----------|---------|------|
|                                                                                                                               |         | constant              | limits    | ability |      |
|                                                                                                                               |         | (M <sup>-1</sup> )    |           |         |      |
| [Zn <sub>3</sub> (TLA) <sub>2</sub> (H <sub>2</sub> O) <sub>2</sub> (4-abpt) <sub>2</sub> ] <sub>n</sub> ·5CH <sub>3</sub> OH | TNP     | 4.23×10 <sup>5</sup>  | 5.24 μM   | Yes     | This |
|                                                                                                                               |         |                       |           |         | work |
| [Cd <sub>3</sub> (NTB) <sub>2</sub> (DPP)(DMA) <sub>2</sub> ]·4DMA                                                            | TNP     | 4.1×10 <sup>4</sup>   | 9.5 μM    |         | 2    |
| [Cd <sub>3</sub> (NTB) <sub>2</sub> (DPP) <sub>2</sub> ]·3DMA·H <sub>2</sub> O                                                | TNP     | 4.89×10 <sup>4</sup>  | 8.0 µM    |         | 2    |
| ${[Zn_4(\mu_3-OH)_2(BTC)_2(BBI4PY)_2] \cdot 10H_2O}_n$                                                                        | TNP     | 2.94×10 <sup>4</sup>  | 7.86 μM   |         | 3    |
| ${[Cd_4(HDDCP)_2(4,4'-bibp)_2(H_2O)_2] \cdot 2.5(DOA) \cdot 1.5(H_2O)}_n$                                                     | TNP     | 7.31×10 <sup>5</sup>  | 3.92 µM   |         | 4    |
| ${[Cd_2(HDDCP)(1,4-bib)(H_2O)] \cdot H_2O}_n$                                                                                 | TNP     | 3.71×10 <sup>5</sup>  | 7.84 μM   |         | 4    |
| Zr-NDI MOF                                                                                                                    | TNP     | 4.057×10 <sup>4</sup> | 35.36 µM  |         | 5    |
| $\{(Me_2NH_2)_4[Eu_4(DDAC)_3(HCO_2)(OH_2)_2]\cdot 8DMF\cdot 9H_2O\}_n$                                                        | TNP     | $8.6 \times 10^{4}$   | 3.5 μM    |         | 6    |
| Zn <sub>5</sub> (µ <sub>3</sub> -OH) <sub>2</sub> (TDA) <sub>4</sub> (4,4'-bpt) <sub>2</sub>                                  | TNP     | 1.856×10 <sup>5</sup> | 1.59 μM   | Yes     | 7    |
| [Cd(NDC)(H <sub>2</sub> O)] <sub>n</sub>                                                                                      | TNP     | 2.385×10 <sup>4</sup> | 4 μΜ      | Yes     | 8    |
| [Zn <sub>4</sub> (DMF)(Ur) <sub>2</sub> (2,6-NDC) <sub>4</sub> ] <sub>n</sub>                                                 | TNP     | 10.83×10 <sup>4</sup> | 7.11 μM   |         | 9    |
| $\{ [Cd_4(L)_2(L_2)_3(H_2O)_2] \cdot 8DMF \cdot 8H_2O \}_n$                                                                   | TNP     | 3.89×10 <sup>4</sup>  | 8.64 μM   | Yes     | 10   |

Table S4. Ksv and LOD of MOF-based luminescent sensors for TNP, LVX and L-Cys



Figure S7. The luminescence intensity of 1- nitroaromatic at 458 nm in 40 µM different nitroaromatics.



Figure S8 The Stern–Volmer plot of  $I_0/I$  versus TNP concentration.



Figure S9. The luminescence intensity of 1- TNP under other nitroaromatics.



Figure S10. The quenching and recyclability test of 1, the upper lines represent the initial fluorescence intensity and the lower lines represent the fluorescence intensity upon addition of 40  $\mu$ M TNP solution.



Figure S11. The luminescence intensity of 1- antibiotics at 458 nm in 60  $\mu$ M different antibiotics.



Figure S12 Stern–Volmer plot of  $I_0/I$  versus LVX concentration.



Figure S13. The luminescence intensity of 1- LVX under mixed antibiotics.



Figure S14. The quenching and recyclability of 1, the upper lines represent the initial fluorescence intensity and the lower lines represent the fluorescence intensity upon addition of 60  $\mu$ M LVX solution.



Figure S15. The luminescence intensity of 1- amino acids at 458nm.



Figure S16 Stern–Volmer plot of *I*<sub>0</sub>/*I* versus L-Cys concentration.



Figure S17. Luminescence intensity of 1 dispersed in a mixture of other amino acids with L-Cys.



Figure S18. The quenching and recyclability of 1, the upper lines represent the initial fluorescence intensity and the lower lines represent the fluorescence intensity upon addition of 40  $\mu$ M L-Cys solution.



Figure S19. PXRD patterns of 1 after experiment.



Figure S20. UV–vis spectral profiles of different nitroaromatics recorded in  $H_2O$  solution and  $E_m$  of 1 in DMF.

Table S5. HOMO and LUMO energy levels of different nitro-analytes

| Analytes        | 3-NT <sup>11</sup> | TNP <sup>12</sup> | NB <sup>13</sup> | 1,3-DNB | 2,6-DNT <sup>14</sup> | 4-NT <sup>13</sup> | 4-NP <sup>13</sup> |
|-----------------|--------------------|-------------------|------------------|---------|-----------------------|--------------------|--------------------|
| LOMO            | -2.83893           | -3.92             | -2.42            | -2.83   | -3.306                | -2.79              | -2.75              |
| НОМО            | -7.55031           | -8.27             | -7.56            | -7.81   | -8.391                | -7.70              | -7.34              |
| Energy Gap (ev) | 4.71138            | 4.35              | 5.14             | 4.98    | 5.085                 | 4.91               | 4.59               |



Figure S21. (a) UV-vis absorption spectra of various antibiotics (b) and various amino acids, (c) UV-vis absorption spectra of 1 upon addition of different concentrations of LVX and (d) L-Cys.

#### References

- 1. S. Senthilkumar, R. Goswami, V. J. Smith, H. C. Bajaj and S. Neogi, ACS Sustain. Chem. Eng., 2018, 6, 10295-10306.
- 2. K. Wang, X.-L. Hu, X. Li, Z.-M. Su and E.-L. Zhou, J. Solid State Chem., 2021, 298 122128.
- 3. S. Khan, P. Das and S. K. Mandal, Inorg. Chem., 2020, 59, 4588-4600.
- 4. R. Guo, L. Gao, J. Liang, Z. Zhang, J. Zhang, X. Niu and T. Hu, CrystEngComm, 2020, 22, 6927-6934.
- 5. G. Radha, T. Leelasree, D. Muthukumar, R. S. Pillai and H. Aggarwal, New J. Chem., 2021, 45, 12931-12937.
- 6. H. Chen, Z. Zhang, T. Hu and X. Zhang, Inorg. Chem. Front., 2021, 8, 4376-4385.

7. H. F. Liu, Y. Tao, T. X. Wu, H. Y. Li, X. Q. Zhang, F. P. Huang and H. D. Bian, *Appl. Organomet. Chem.*, 2021, DOI: 10.1002/aoc.6456.

- 8. P. Ghosh, S. K. Saha, A. Roychowdhury and P. Banerjee, Eur. J. Inorg. Chem., 2015, 2015, 2851-2857.
- 9. S. Mukherjee, A. V. Desai, B. Manna, A. I. Inamdar and S. K. Ghosh, Cryst. Growth Des. 2015, 15, 9, 4627–4634.
- 10. T. K. Pal, N. Chatterjee and P. K. Bharadwaj, Inorg. Chem., 2016, 55, 1741-1747.
- 11. X. Zhang, C. Ge, N. Zhang, Y. Duan, Y. Wang, L. Zhao, X. Zhuang, J. Li, J. Wu and Q. Yang, Inorg. Chim. Acta, 2019, 496.
- 12. B.-X. Dong, Y.-M. Pan, W.-L. Liu and Y.-L. Teng, Cryst. Growth Des., 2017, 18, 431-440.
- 13. R. Goswami, S. C. Mandal, B. Pathak and S. Neogi, ACS Appl Mater Interfaces, 2019, 11, 9042-9053.
- 14. F.-M. Wang, L. Zhou, W. P. Lustig, Z. Hu, J.-F. Li, B.-X. Hu, L.-Z. Chen and J. Li, Cryst. Growth Des., 2018, 18, 5166-5173.