Five POM-based compounds modified by mono- and bistriazole derivatives: photocatalytic, electrochemical and

supercapacitor properties

Xi Xu, Yanping Zhang, Jun Ying*, Liang Jin, Aixiang Tian, Xiuli Wang*

Table S1. Selected bond lengths (Å) and angles ($^{\rm o}$) of compounds 1–5. Compound 1

Ni(1) - O(1)	2.0215(16)	Ni(1) - N(1)	2.0454(19)
$Ni(1) - O(7)^2$	2.0732(16)	Ni(1) - N(2)	1.388(3)
O(1) - Ni(1) - O3W	88.76(7)	$N(1) - Ni(1) - O(7)^2$	90.49(7)
$O1W - Ni(1) - O(7)^2$	87.59(7)	$O(1) - Ni(1) - O(7)^2$	92.93(7)
O(1) - Ni(1) - O2W	174.58(7)	O(1) - Ni(1) - N(1)	93.17(8)

Symmetry codes: #1 1-X, -Y,1-Z #2 1-X, 1-Y, 1-Z

Compound 2

Zn(1) - O3W	2.1862(17)	Zn(1) - O(12)	2.0815(17)
Zn(1) - N(1)	2.087(2)	$Zn(1) - O(5)^2$	2.1390(16)
O(12) - Zn(1) - O3W	87.67(7)	$O(12) - Zn(1) - O(5)^2$	94.10(7)
O2W - Zn(1) - N(1)	175.18(8)	O(12) - Zn(1) - N(1)	93.13(8)
N(1) - Zn(1) - O3W	85.30(8)	$N(15) - Zn(1) - O(5)^2$	89.92(7)

Symmetry codes: #1 1-X, 2-Y,1-Z #2 1-X, 1-Y, 1-Z

Compound 3

Co(1) - O(12)	2.089(3)	$Co(1) - O1W^2$	2.070(3)
Co(1) - N(1)	2.095(3)	$Co(1) - N(1)^2$	2.095(3)
$O1W - Co(1) - O1W^2$	180.00	$O(12)^2 - Co(1) - N(1)$	80.10(12)
O(12) - Co(1) - N(1)	99.90(12)	$O1W^2 - Co(1) - O(12)$	90.85(11)
O1W - Co(1) - N(1)	89.06(13)	$O1W^2 - Co(1) - N(1)$	90.94(13)

Symmetry codes: #1 -X, 1-Y,1-Z #2 -X, 1-Y, -Z

Compound 4

$Cu(1) - O(9)^1$	2.099(3)	Cu(1) – O(5)	2.063(3)
Cu(1) - N(1)	1.975(5)	$Cu(1) - N(2)^2$	2.003(5)

$\mathrm{Mo}(3)-\mathrm{O}(9)-\mathrm{Cu}(1)^1$	138.05(19)	Mo(1) - O(5) - Cu(1)	134.3(2)
N(2) - N(1) - Cu(1)	118.8(4)	C(1) - N(1) - Cu(1)	132.6(4)
$N(1) - N(2) - Cu(1)^2$	119.5(3)	$C(2) - N(2) - Cu(1)^2$	133.6(4)

Symmetry codes: #1 -X, 1-Y,2-Z #2 1-X, 1-Y, 1-Z

Compound 5

Cu(1) - O(47)	2.280(13)	Cu(1) - N(1)	2.014(15)
Cu(2) – O2W	2.059(14)	Cu(2) - N(14)	1.981(16)
Cu(3) - O1W	1.949(14)	Cu(3) – N(7)	2.001(15)
N(1) - Cu(1) - O(47)	88.3(5)	N(10) - Cu(1) - O(8)	77.5(7)
N(8) - Cu(2) - N(14)	175.0(7)	N(14) - Cu(2) - O(47)	90.0(6)
N(7) - Cu(3) - N(2)	148.9(7)	O(47) - Cu(3) - N(7)	89.5(5)

Symmetry codes: #1 1-X, 1-Y,2-Z #2 1-X, 1-Y, 2-Z #3 +X, 1+Y, +Z #4 -X, 2-Y, 1-Z

Supercapacitors.					
Electrode	Cs(F)	Current	Current	Kei.	
	g ')	density $(A = 1)$	collector		
		(A g ⁻¹)			
2– GCE	412.77	1	glassy	This	
	-		carbon	work	
3– GCE	580	1	glassy	This	
			carbon	work	
4– GCE	823.09	1	glassy	This	
			carbon	work	
$[Cu^{II}_{2}(C_{12}H_{12}N_{6})_{4}(PMo^{VI}_{9}Mo^{V}_{3}O_{39})]$	154.5	3	glassy	1	
			carbon		
$[Cu^{I}H_{2}(C_{12}H_{12}N_{6})(PMo_{12}O_{40})] \cdot [(C_{6}H_{15}N)(H_{2}O)_{2}]$	249.0	3	glassy	1	
			carbon		
$H_3[Cu_2(4-dpye)_2(PMo_{12}O_{40})]$	260.0	0.5	carbon	2	
			cloth		
$H[Cu_{2}(4-Hdpye)_{2}(PMo_{12}O_{40})(H_{2}O)_{4}]\cdot 2H_{2}O$	196.6	0.5	carbon	2	
			cloth		
$[PMo^{VI_9}Mo^{V_3}O_{40}]Cu^{I_5}[4\text{-}atrz]_6\cdot H_2O$	237.1	1	glassy	3	
			carbon		
$[HPW^{VI}_{9}W^{V}_{3}O_{40}]Cu^{I}_{5}[4-atrz]_{6}$	147.5	1	glassy	3	
			carbon		
$[H_2SiMo^{VI}_9MoV_3O_{40}]Cu^I_5[4\text{-atrz}]_6\cdot H_2O$	232.5	1	glassy	3	
			carbon		
$(H_2 bipy)_{1.5}[Cu^{I}(bipy)(C_6H_5PO_3)_2Mo_5O_{15}] \cdot H_2O$	70.3	2	glassy	4	
			carbon		
$[Cu^{II}_{2}(bipy)(H_{2}O)_{4}(C_{6}H_{5}PO_{3})_{2}Mo_{5}O_{15}]$	160.9	2	glassy	4	
			carbon		
$[H(C_{10}H_{10}N_2)Cu_2][PMo_{12}O_{40}]$	287	1	glassy	5	
			carbon		
$(C_{10}H_{10}N_2)Cu_2][PW_{12}O_{40}]$	153.43	1	glassy	5	
			carbon		

 Table S2. Comparison of the properties of the POM-based compounds with several published

 supercapacitors

Fig. S1. Polyhedral/ball/stick view of the unit of compound 2. The hydrogen atoms are omitted for clarity.

Fig. S2. The supramolecular 2D layer of **3** through the hydrogen bonding interactions of N4-08 (2.863 Å).

Fig. S3. The supramolecular 2D layer of 4 through the hydrogen bonding interactions.

Fig. S4. The supramolecular 2D layer of 5 with dissociative PW_{12} anions dispersing between adjacent layers.

Fig. S5. The IR spectra of compounds 1–5.

Fig. S6. The PXRD patterns of compounds 1–5.

Fig. S7. The solid-state optical diffuse-reflectance spectra of compounds 1–5.

Fig. S8. Cyclic voltammograms of 1–, 3– and 5–CPEs in 0.1 M $H_2SO_4 + 0.5M$

Na₂SO₄ aqueous solution containing 0-8 mM KBrO₃/Cr(VI). Scan rate: 200 mV s⁻¹.

Fig. S9. Cyclic voltammograms of bare–CPE in 0.1 M $H_2SO_4 + 0.5M Na_2SO_4$ aqueous solution containing 0–8 mM KNO₂/KBrO₃/Cr(VI)/AA. Scan rate: 200 mV s⁻¹.

Fig. S10. The absorption spectra of GV solution during the decomposition reaction under UV irradiation with compounds 1–5 as catalysts.

Fig. S11. The absorption spectra of MB solution during the decomposition reaction under UV irradiation with compounds 1–5 as catalysts.

Fig. S12. The catalytic conversion curves of compounds 1–5.

Fig. S13. The absorption spectra of MO solution during the decomposition reaction under UV irradiation with compounds **1–5** as catalysts.

Fig. S14. Four cycles of photocatalytic degradation of compounds 1-5.

Fig. S15. The PXRD spectra of compounds 1–5.

Fig. S16. The UV spectra of the Cr(VI) solution without compounds as the photoreduction catalysts.

Notes and references

1 D. F. Chai, J. J. Xin, B. Li, H. J. Pang, H. Y. Ma, K. Q. Li, B. X. Xiao, X. M. Wang and L. C. Tan, *Dalton Trans.*, 2019, 48, 13026.

2 Q. Q. Liu, X. L. Wang, H. Y. Lin, Z. H. Chang, Y. C. Zhang, Y. Tian, J. J. Lu and L. Yu, Dalton Trans., 2021, 50, 9450

3 M. L. Yang, S. Rong, X. M. Wang, H. Y. Ma, H. J. Pang, L. C. Tan, Y. X. Jiang and K. Q. Gao, ChemNanoMat, 2021, 7, 299

4 B. R. Lu, S. B. Li, J. Pan, L. Zhang, J. J. Xin, Y. Chen and X. G. Tan, Inorg. Chem., 2020, 59, 1702

5 S. Roy, V. Vemuri, S. Maiti, K. S. Manoj, U. Subbarao and S. C. Peter, Inorg. Chem., 2018, 57, 12078