Supplementary Information

$\mathrm{A}\left\{\mathrm{Cd}_{4} \mathrm{Cl}_{2} \mathrm{O}_{14}\right\}$ cluster functionalized sandwich-type tungstoarsenate as conformation modulator for misfolding AB

 peptide ${ }^{\dagger}$ Zhang, ${ }^{*}$ and Yulan Niu*b
a. Chemistry and Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, 030008, P. R. China. E-mail: maxiang@tit.edu.cn; jiaihua10660@163.com; Fax: +86 3513569476.
b. Laboratory of Biochemistry and Pharmacy, Taiyuan Institute of Technology, Taiyuan, 030008, P. R. China. E-mail: Niuyl@tit.edu.cn
c. School of environmental science, Nanjing Xiaozhuang University, Nanjing, 2111171, P. R. China. Email: zhangcl@njxzc.edu.cn.
d. Department of Geriatrics, First affiliated Hospital of Naval Medical University,, Shanghai, 200081, P. R. China. E-mail: wxmshchyy@163.com.

1. Supplementary Tables and Figures

Table S1 Crystallographic data and structural refinements for CdAW

Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{88} \mathrm{~N}_{12} \mathrm{As}_{2} \mathrm{Cd}_{4} \mathrm{Cl}_{2} \mathrm{~W}_{18} \mathrm{O}_{76}$
Formula weight	5668.64
Crystal system	Triclinic
Space group	P-1
a / \AA	12.5169(15)
b / \AA	12.5282(16)
c / \AA	15.952(3)
$\alpha /$ deg	99.623(3)
B/deg	98.647(3)
$V /$ deg	112.828(2)
V / \AA^{3}	2208.5(6)
z	1
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	4.262
μ / mm^{-1}	25.189
T/K	296(2)
Limiting indices	$-14 \leq h \leq 14$
	$-14 \leq k \leq 14$
	$-12 \leq 1 \leq 18$
Measured reflections	11000
Independent reflections	7654

$R_{\text {int }}$	0.0939
Data / restrains / parameters	$7654 / 200 / 585$
GOF on F^{2}	1.004
Final R indices $[I>2 \sigma(I)]$	$R_{1}=0.0792$,
	$w R_{2}=0.1755$
R indices (all data)	$R_{1}=0.0942$
	$w R_{2}=0.1874$
Completeness	98.5%

Table S2 Selected bond length (Å) for CdAW

W(1)-O(1)	1.753	$\mathrm{W}(2)-\mathrm{O}(2)$	1.756
W(1)-O(10)	1.771	W(2)-O(11)	1.769
$\mathrm{W}(1)-\mathrm{O}(12)$	1.925	W(2)-O(13)	1.942
W(1)-O(30)	1.961	W(2)-O(12)	1.947
W(1)-O(25)	2.017	W(2)-O(14)	2.000
W(1)-O(31)	2.322	W(2)-O(31)	2.361
W(3)-O(3)	1.718	W(4)-O(4)	1.715
W(3)-O(25)	1.859	W(4)-O(20)	1.761
W(3)-O(14)	1.884	W(4)-O(13)	1.891
W(3)-O(19)	1.934	W(4)-O(17)	1.993
W(3)-O(15)	1.942	W(4)-O(18)	1.998
W(3)-O(31)	2.479	W(4)-O(32)	2.349
W(5)-O(5)	1.720	W(6)-O(6)	1.729
W(5)-O(18)	1.883	W(6)-O(22)	1.782
W(5)-O(21)	1.885	W(6)-O(17)	1.874
W(5)-O(15)	1.891	W(6)-O(28)	1.986
W(5)-O(16)	1.956	W(6)-O(21)	1.998
W(8)-O(8)	1.722	W(6)-O(32)	2.363
W(8)-O(26)	1.807	W(7)-O(7)	1.710
W(8)-O(29)	1.879	W(7)-O(27)	1.840
W(8)-O(28)	1.898	W(7)-O(19)	1.898
W(8)-O(23)	1.976	W(7)-O(16)	1.907
W(8)-O(33)	2.330	W(7)-O(23)	1.912
W(9)-O(9)	1.710	$\mathrm{Cd}(1)-\mathrm{O}(11)$	2.223
W(9)-O(24)	1.778	$\mathrm{Cd}(1)-\mathrm{O}(10)$	2.244
W(9)-O(30)	1.889	$\mathrm{Cd}(1)-\mathrm{O}(26) \# 1$	2.293
W(9)-O(29)	1.971	$\mathrm{Cd}(1)-\mathrm{O}(22) \# 1$	2.321
W(9)-O(27)	2.061	$\mathrm{Cd}(1)-\mathrm{Cl}(1)$	2.511
W(9)-O(33)	2.376	$\mathrm{Cd}(1)-\mathrm{O}(34)$	2.512
$\mathrm{Cd}(2)-\mathrm{O}(24)$	2.165	$\mathrm{Cd}(2)-\mathrm{O}(34)$	2.341
$\mathrm{Cd}(2)-\mathrm{O}(20) \# 1$	2.177	$\mathrm{As}(1)-\mathrm{O}(34)$	1.663
$\mathrm{Cd}(2)-\mathrm{O}(22) \# 1$	2.253	$\mathrm{As}(1)-\mathrm{O}(32)$	1.680
$\mathrm{Cd}(2)-\mathrm{O}(26)$	2.280	$\mathrm{As}(1)-\mathrm{O}(33)$	1.689
$\mathrm{Cd}(2)-\mathrm{O}(34) \# 1$	2.330	As(1)-O(31)	1.708

Table S3 Bond valence and Σs of W, As, and Cd in CdAW

Bond	Valence	Bond	Valence	Bond	Valence	Atom	гs
$\mathrm{W}(1)-\mathrm{O}(1)$	1.558	$\mathrm{W}(1)-\mathrm{O}(12)$	0.978	W(1)-O(25)	0.763		
$\mathrm{W}(1)-\mathrm{O}(10)$	1.484	$\mathrm{W}(1)-\mathrm{O}(30)$	0.888	$\mathrm{W}(1)-\mathrm{O}(31)$	0.335	W(1)	6.006
$\mathrm{W}(2)-\mathrm{O}(2)$	1.545	W(2)-O(13)	0.935	W(2)-O(14)	0.799		
W(2)-O(11)	1.492	W(2)-O(12)	0.922	W(2)-O(31)	0.301	W(2)	5.994
$\mathrm{W}(3)-\mathrm{O}(3)$	1.712	W(3)-O(14)	1.093	W(3)-O(15)	0.935		
$W(3)-O(25)$	1.170	W(3)-O(19)	0.955	W(3)-O(31)	0.219	W(3)	6.084
$\mathrm{W}(4)-\mathrm{O}(4)$	1.726	W(4)-O(13)	1.073	W(4)-O(18)	0.803		
W(4)-O(20)	1.524	W(4)-O(17)	0.814	W(4)-O(32)	0.311	W(4)	6.252
W(5)-O(5)	1.703	W(5)-O(21)	1.090	W(5)-O(32)	0.164		
W(5)-O(18)	1.096	W(5)-O(15)	1.073	W(5)-O(16)	0.900	W(5)	6.026
W(6)-O(6)	1.662	W(6)-O(17)	1.123	W(6)-O(21)	0.803		
W(6)-O(22)	1.440	W(6)-O(28)	0.830	W(6)-O(32)	0.300	W(6)	6.159
$\mathrm{W}(7)-0(7)$	1.750	W(7)-O(19)	1.053	W(7)-O(33)	0.180		
W(7)-O(27)	1.231	W(7)-O(16)	1.027	W(7)-O(23)	1.014	W(7)	6.255
W(8)-O(8)	1.694	W(8)-O(29)	1.108	W(8)-O(23)	0.853		
W(8)-O(26)	1.346	W(8)-O(28)	1.053	W(8)-O(33)	0.328	W(8)	6.381
W(9)-O(9)	1.750	W(9)-O(30)	1.079	W(9)-O(27)	0.678		
W(9)-O(24)	1.456	W(9)-O(29)	0.864	W(9)-O(33)	0.289	W(9)	6.115
$\mathrm{Cd}(1)-\mathrm{O}(11)$	0.422	$\mathrm{Cd}(1)-\mathrm{O}(26)$ \#1	0.349	$\mathrm{Cd}(1)-\mathrm{Cl}(1)$	0.446		
$\mathrm{Cd}(1)-\mathrm{O}(10)$	0.399	$\mathrm{Cd}(1)-\mathrm{O}(22)$ \#1	0.324	$\mathrm{Cd}(1)-\mathrm{O}(34)$	0.193	$\mathrm{Cd}(1)$	2.134
$\mathrm{Cd}(2)-\mathrm{O}(24)$	0.494	$\mathrm{Cd}(2)-\mathrm{O}(22) \# 1$	0.389	Cd(2)-O(34)\#1	0.316		
$\mathrm{Cd}(2)-\mathrm{O}(20)$ \#1	0.478	$\mathrm{Cd}(2)-\mathrm{O}(26)$	0.362	$\mathrm{Cd}(2)-\mathrm{O}(34)$	0.307	$\mathrm{Cd}(2)$	2.347
As(1)-O(34)	1.325	As(1)-O(32)	1.265	As(1)-O(33)	1.235		
As(1)-O(31)	1.173					As(1)	4.997

Fig. S1 The anatomical view of the $\left.\left[\mathrm{Cd}_{4} \mathrm{Cl}_{2}\left(\mathrm{~B}-\alpha-\mathrm{AsW}_{9} \mathrm{O}_{34}\right)_{2}\right]\right\}^{12-}$ in CdAW .

The IR spectrum of CdAW shows similar asymmetric vibrations to other $\left[\mathrm{B}-\alpha-\mathrm{AsW}_{9} \mathrm{O}_{34}\right]^{9-}$ containing species. ${ }^{1}$ As shown in Fig. S 2 , three characteristic bands assigned to the $v\left(\mathrm{~W}-\mathrm{O}_{t}\right)$, $v\left(\mathrm{~W}-\mathrm{O}_{\mu 2}\right)$, and $v\left(\mathrm{~W}-\mathrm{O}_{\mu 3}\right)$ appear at $940,783,733-625 \mathrm{~cm}^{-1}$, respectively. ${ }^{1}$ The bond at $874 \mathrm{~cm}^{-1}$ is attributed to $v\left(\mathrm{As}-\mathrm{O}_{\mu 4}\right) .{ }^{1}$ In addition, characteristic bands at $3410 \mathrm{~cm}^{-1}$ are ascribed to stretching vibrations of $\mathrm{N}-\mathrm{H}$ which confirms the presence of en. Vibration at $1614 \mathrm{~cm}^{-1}$ can be assigned to OH stretching. ${ }^{1}$ The IR spectrum is in good agreement with the result of X-ray diffraction structural analysis.

Fig. S2 IR spectrum for CdAW.

Fig. S3 The structures of a series of amines used in parallel experiments.

Fig. S4 Comparison of the simulated and experimental XRPD patterns of CdAW.
As shown in Fig. S5, the thermogravimetric (TG) curve of CdAW displays two stages of weight loss, giving a total loss of 19.06% in the temperature range of $25-600^{\circ} \mathrm{C}$. The first stage from 40 to $130^{\circ} \mathrm{C}$ is attributed to the loss of eight lattice water molecules, and the observed weight loss 2.90% is consistent with the calculated value 2.86%. The second stage with the weight loss of 16.16% occurs between 190 and $566^{\circ} \mathrm{C}$, which may be assigned to the removal of six 1,2-dap molecules, one $\mathrm{As}_{2} \mathrm{O}_{3}$ and four structural water molecule (calcd. 16.10\%). ${ }^{2}$

Fig. S5 TGA curve of CdAW.
As shown in Fig. S6, the UV spectrum displays two absorption peaks in aqueous solution, one locating at 193.8 nm and the other with a wide shoulder absorption at 257.5 nm in the region of $190 \sim 600 \mathrm{~nm}$. These two peaks may be assigned to $\mathrm{O}_{t} \rightarrow \mathrm{~W}$ and $\mathrm{O}_{\mu} \rightarrow \mathrm{W}$ charge transfer transitions, respectively. ${ }^{3}$

The influences of pH value on the stability of CdAW have also been investigated by UVvisible spectra. As shown in the inset of Fig. S6, the UV-visible absorption peaks of CdAW showed no significant change between pH 4.50 and 8.00 in intensity. Beyond the above pH range, absorption peaks at both 193.8 nm gradually change in intensity, which may indicate that the skeleton of CdAW began to collapse.

Fig. S6 UV-Vis spectra of CdAW in deionized water for 1-7 days; and pH stability of CdAW (inset a and b) .

2. Experimental Section

2.1 Materials and methods

In this study, reagents used are all of analytical grade, and purchased from commercial suppliers and used as received unless otherwise stated. Human A640/42 was purchased from Macklin agent Ltd. (China), which were verified by HPLC and electrospray ionization mass spectrometry (ESI-MS). 2', 7^{\prime}-dichlorofluorescin diacetate (DCFH-DA), 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), nerve growth factor 7S (NGF-7S) and tris(hydromethyl)aminomethane (Tris) were purchased from Sigma-Aldrich Inc. (USA). Cadmium chloride $\left(\mathrm{CdCl}_{2}\right)$, sodium tungstate $\left(\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$, sodium arsenite $\left.(\mathrm{NaAsO})_{2}\right)$, zinc acetate $\left(\mathrm{Zn}(\mathrm{OAC})_{2}\right)$, copper(II) chloride $\left(\mathrm{CuCl}_{2}\right)$ and 1,2-diaminopropane (dap) were purchased from J \& K. Pheochromocytoma cells (PC12 cells) were purchased from American Type Culture Collection (ATCC). Stock solutions of $\mathrm{A} B 40, \mathrm{Zn}(\mathrm{OAC})_{2}$ and CuCl_{2} were prepared according to the reported procedures; ${ }^{4}$ and stock solution of CdAW was prepared by dissolving the compound in DMSO to give a final concentration of 2 mM . All the solutions were prepared with Milli-Q water and filtered through a $0.22 \mu \mathrm{~m}$ filter (Millipore).

A single crystal of CdAW was mounted on a Bruker Apex-2 diffractometer with a CCD detector using graphite monochromatized MoK α radiation ($\lambda=0.71073$ Å) at 296 K. Data integration was performed using SAINT. ${ }^{5}$ Routine Lorentz and polarization corrections were applied. Multiscan absorption corrections were performed using SADABS. ${ }^{6}$ The structure was solved by direct methods and refined by full-matrix least-squares on F^{2}. The remaining atoms were found from successive full-matrix least-squares refinements on F^{2} and Fourier syntheses. All calculations were performed using the SHELXL-97 program package. ${ }^{7}$ No hydrogen atoms associated with the water molecules were located from the difference Fourier map. Positions of the hydrogen atoms attached to the carbon and nitrogen atoms were geometrically placed. All hydrogen atoms were refined isotropically as a riding mode using the default SHELXTL parameters.

DCF fluorescence were conducted on a Thermo Scientific Varioskan Flash microplate reader. The morphological analysis were examined on a JEOL JEM-2100 LaB6 (HR) transmission
electron microscope. The CD spectrum of the sample solution was measured on a JASCO J-810 automatic recording spectropolarimeter (Tokyo, Japan). Elemental analysis was performed on a PQEXCe II ICP-MS. IR/UV spectra were recorded on a NICOLET iS10 and UV-3600 spectrometer respectively. The TG was tested on a STA449F3 TG-DSC from 25 to $600^{\circ} \mathrm{C}$.

2.2 Synthesis of CdAW

Two solutions were prepared separately. Solution A: $\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(3.299 \mathrm{~g}, 10.00 \mathrm{mmol})$ and $\mathrm{NaAsO}_{2}(0.430 \mathrm{~g}, 3.00 \mathrm{mmol})$ were dissolved in water (100 mL) under stirring. Solution B : $\mathrm{CdCl}_{2}(0.916 \mathrm{~g}, 5.00 \mathrm{mmol})$ and dap ($0.06 \mathrm{~mL}, 0.850 \mathrm{mmol}$) were added to water (100 mL) under stirring. The resulting mixture of B is added to solution A. The mixture was stirred for 10 min at room temperature and then the pH value was adjusted to 5.50 by adding $6 \mathrm{~mol} \cdot \mathrm{~L}^{-1} \mathrm{HCl}$ dropwise. The solution was sealed in a 25 mL Teflon-lined autoclave kept at $160^{\circ} \mathrm{C}$ for 3 days and then cooled to room temperature. Transparent rhomboic crystals were collected. Yield: 0.61 g . ca. 22% (based on $\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$).

2.3 Bond valence sums (Σ s)

The bond valence sums (Σs) of oxygen atoms in CdAW were further calculated according to the reported methods ${ }^{8}$. Briefly, the oxidation states of the O atoms in SCW were calculated on the following formula:

$$
V_{i}=\sum_{j} s_{i j}=\sum_{j} \exp \left(\frac{r_{0}{ }^{\prime}-r_{i j}}{B}\right)
$$

where $r_{i j}$ represents the observed values of bond distances listed in Table S2, and $r_{0}{ }^{\prime}$ the theoretical value of bond distance between two atoms; B was set to $0.37 .{ }^{9}$ The theoretical values of $\mathrm{W}-\mathrm{O}, \mathrm{As}-\mathrm{O}, \mathrm{Cd}-\mathrm{Cl}$ and $\mathrm{Cd}-\mathrm{O}$ come from literatures, in which the $r_{0}{ }^{\prime}\left(\mathrm{W}^{6+}-\mathrm{O}\right)$ is $1.917 \AA \AA^{\circ} r_{0}{ }^{\prime}\left(\mathrm{As}^{5+}\right.$ O) is $1.767 \AA \AA^{\circ}, r_{0}{ }^{\prime}\left(\mathrm{Cd}^{2+}-\mathrm{Cl}\right)$ is $2.212 \AA$, and $r_{0}{ }^{\prime}\left(\mathrm{Cd}^{2+}-\mathrm{O}\right)$ is $1.904 \AA \AA^{6,10}$

2.4 Stability of CdAW

The stability of CdAW was studied by using UV-Vis spectroscopy according to the reported method. ${ }^{11}$

2.5 Morphological analysis

A840 (20 $\mu \mathrm{M}$) in Tris buffer solution (20 mM Tris- $\mathrm{HCl} / 150 \mathrm{mM} \mathrm{NaCl}, 990 \mu \mathrm{~L}$) was incubated alone or with $\mathrm{Zn}(\mathrm{OAc})_{2} / \mathrm{CuCl}_{2}(4 \mu \mathrm{~L}, 10 \mathrm{mM})$ in the absence or presence of CdAW (with the final concentration of $20 \mu \mathrm{M}$) or DMSO at $37^{\circ} \mathrm{C}$ for 24 h . A drop of solution ($10 \mu \mathrm{~L}$) was spotted on the 300-mesh carbon-coated copper grids at room temperature. After 2 min , the excess solution was removed. The grids were stained with uranyl acetate ($10 \mu \mathrm{~L}, 1 \%, \mathrm{w} / \mathrm{v}$) for 2 min ; Then, they were washed with Milli-Q water ($10 \mu \mathrm{~L}$). The samples were examined on a JEOL JEM-2100 LaB6 (HR) transmission electron microscope.

2.6 Conformational modulation

AB40 ($20 \mu \mathrm{M}$) was dissolved in the Tris buffer solution (20 mM Tris- $\mathrm{HCl} / 150 \mathrm{mM} \mathrm{NaCl}$) and incubated without or with $\mathrm{Zn}(\mathrm{OAc})_{2}$ or $\mathrm{CuCl}_{2}(40 \mu \mathrm{M})$ in the absence or presence of CdAW (with the final concentration of $20 \mu \mathrm{M}$) at $37^{\circ} \mathrm{C}$ for 24 h , respectively. The CD spectrum of the sample solution was measured on a JASCO J-810 automatic recording spectropolarimeter (Tokyo, Japan) in the range of $190-260 \mathrm{~nm}$. The data acquired in the absence of protein was subtracted from the spectrum. In the control tests, DMSO gave negative results.

2.7 ThT assay

A840 (20 $\mu \mathrm{M}$) in buffer solution (20 mM Tris- $\mathrm{HCl} / 150 \mathrm{mM} \mathrm{NaCl}, 993.6 \mu \mathrm{~L}$) was incubated at
$37{ }^{\circ} \mathrm{C}$ for 24 h . ThT ($2 \mu \mathrm{~L}, 5 \mathrm{mM}$) was added to each solution simultaneously in the dark and incubated at $37^{\circ} \mathrm{C}$ for 0.5 h . CdAW ($4 \mu \mathrm{~L}, 5 \mathrm{mM}$) or DMSO ($4 \mu \mathrm{~L}$, final concentration 0.40%) was added into the system with stirring. Each sample was transferred to a well of a flat-bottomed 96wellblack plate (Corning Costar Corp). The fluorescence spectra ($\lambda_{\mathrm{ex}}=415 \mathrm{~nm}$) were measured by a Varioskan Flash microplate reader (Thermo Scientific) every 15 min from 0 to 120 min .

$2.8^{1} \mathrm{H}$-NMR spectra

The samples of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were prepared by dissolving CdAW $(200 \mu \mathrm{M})$ in a mixture containing AB40 (200 $\mu \mathrm{M}$), 10\% $\mathrm{D}_{2} \mathrm{O}, 85 \% \mathrm{H}_{2} \mathrm{O}$ and 5% DMSO-d ${ }^{6}$ and incubating at $37^{\circ} \mathrm{C}$ for 24 h and then were centrifuged to get the soluble samples. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on a Bruker DRX-600 spectrometer.

2.9 Inhibition of ROS generation

DCF stock solution (1 mM) and horseradish peroxidase (HRP) stock solution ($4 \mu \mathrm{M}$) were prepared with a Tris buffer (20 mM Tris $-\mathrm{HCl} / 150 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.4$) as described in the reported procedures. ${ }^{1}$ Samples containing $\mathrm{A} 840(20 \mu \mathrm{M})$ and $\mathrm{CuCl}_{2}(40 \mu \mathrm{M})$ were incubated without or with CdAW ($20 \mu \mathrm{M}$, with final DMSO content: $1.5 \mu \mathrm{~L}$) at $37^{\circ} \mathrm{C}$. Then, ascorbate solution ($10 \mu \mathrm{M}$) was added to each sample and incubated at $37^{\circ} \mathrm{C}$ for 10 min . The samples ($200 \mu \mathrm{~L}$) were injected to the wells of a flat-bottomed 96-well black plate. HRP ($0.04 \mu \mathrm{M}$) and DCFH ($100 \mu \mathrm{M}$) were then injected to each solution and incubated in the dark at $37{ }^{\circ} \mathrm{C}$. Fluorescence intensity ($\lambda_{\text {ex }}=485 \mathrm{~nm}$) from 505 to 650 nm was measured by a Varioskan Flash microplate reader (Thermo Scientific).

2.10 Inhibition of neurotoxicity

The PC12 cells used for the neurotoxicity, and synaptic dysfunction analysis were prepared as described in the previous literature. ${ }^{12}$ The effects of CdAW on the inhibition neurotoxicity were evaluated by using the MTT assay. PC12 cells were incubated with AB40 ($20 \mu \mathrm{M}$) alone or with Zn^{2+} - or $\mathrm{Cu}^{2+}(40 \mu \mathrm{M})$-induced A840 complexes in absence or presence of CdAW ($20 \mu \mathrm{M}$) for 24 h . The results are obtained from three independent experiments and presented as the mean \pm standard deviation of the independent experiments. The results were compared using a twoway ANOVA (* $\mathrm{p} \leq 0.05,{ }^{* *} \mathrm{p} \leq 0.01,{ }^{* * *} \mathrm{p} \leq 0.001$).

2.11 Cell morphological analysis

The PC12 cells used for this morphological analysis were prepared as above. After incubation for 24 h , the morphological pictures of those cells were captured by a microscope.

[^0]3422-3431.
${ }^{12}$ T. Yang, X. H. Wang, C. L. Zhang, X. Ma, K. Wang, Y. Q. Wang, J. Luo, L. Yang, C. Yao and X. Y. Wang, Chem. Commun., 2016, 52, 2245-2248.

[^0]: ${ }^{1}$ J. Y. Niu, X. Ma, J. W. Zhao, P. T. Ma, C. Zhang and J. P. Wang, CrystEngComm 2011, 13, 4834-4837.
 ${ }^{2}$ C. Y. Sun, Y. G. Li and E. B. Wang, Inorg. Chem., 2007, 46, 1563-1574.
 ${ }^{3}$ X. Ma, P. T. Ma, D. D. Zhang, J. A. Hua, C. Zhang, T. F. Huang, J. P. Wang, J. Y. Niu, Dalton Trans. 2013, 42, 874-878.
 ${ }^{4}$ X. H. Wang, X. Y. Wang, C. L. Zhang, Y. Jiao and Z. J. Guo, Chem. Sci., 2012, 3, 1304-1312.
 ${ }^{5}$ Saint. Bruker, AXS Inc., Madison WI 2007.
 ${ }^{6}$ N. E. Brese and M. O’Keeffe, Acta Crystallogr. B Struct. Sci., 1991, 47, 192-197.
 ${ }^{7}$ G. M. Sheldrick, SHEXTL-97, Programs for Crystal Structure Refinements. University of Göttingen, Germany 1997.
 ${ }^{8}$ S. T. Zheng, J. Zhang, J. M. Juan, D. Q. Yuan and G. Y. Yang, Angew. Chem. Int. Ed. Engl., 2009, 48, 7176-7179.
 ${ }^{9}$ I. D. Brown and D. Altermatt, Acta Crystallogr. B Struct. Sci. 1985, 41, 244-247.
 ${ }^{10}$ G. P. Shields, P. R. Raithby, F. H. Allen and W. D. S. Motherwell, Acta Crystallogr. B Struct. Sci., 2000, 56, 455-465.
 ${ }^{11}$ N. Gao, H. J. Sun, K. Dong, J. S. Ren, T. C. Duan, C. Xu and X. G. Qu, Nature Commun., 2014, 5,

