N-methylimidazolium containing metal phosphate-oxalates: solvent-free synthesis, crystal structure, and proton conduction

Junfeng Zhang^a, Qing Lei^b, Lindong Luan^{b,*}, Hongmei Zeng^b, Guohong Zou^a, Zhien

Lin^{a,*}

^a College of Chemistry, Sichuan University, Chengdu 610064, PR China

^b Department of Criminal Investigation, Sichuan Police College, Luzhou 646000, PR China

* Corresponding authors. E-mail addresses: luanld@scpolicec.edu.cn (L. Luan); zhienlin@scu.edu.cn (Z. Lin)

Physical measurements:

Powder X-ray diffraction data were obtained using a Shimazu XRD-6100 diffractometer with Cu-Ka radiation ($\lambda = 1.5418$ Å). Infrared spectra (KBr pellets) were recorded on a Nicolet Impact 410 FTIR spectrometer. The thermogravimetric analyses were performed on a Netzsch STA 449c analyzer in a flow of N₂ with a heating rate of 10 °C/min. Magnetic measurement was performed on the Quantum Design SQUID MPMS XL-7 magnetometer in a magnetic field of 1000 Oe in the temperature range of 2-300 K. Alternating current impedance measurements were carried out with a Solartron SI 1260 impedance/gain-phase analyzer over the frequency range from 0.1 Hz to 10 MHz with an applied voltage of 10 mV. The relative humidity was controlled by a STIK Corp. CIHI-150B incubator. The sample was pressed to form a cylindrical pellet of crystalline powder sample (~2 mm thickness $\times 5$ mm ϕ) coated with C-pressed electrodes. Two silver electrodes were attached to both sides of pellet to form four end terminals (quasifour-probe method). Single crystal X-ray diffraction data were collected on a New Gemini, Dual, Cu at zero, EosS2 diffractometer at room temperature. The crystal structures were solved by direct methods. The structures were refined on F^2 by fullmatrix least-squares methods using the SHELXTL program package.¹

Reference

1. G. M. Sheldrick, Acta Cryst., Sect. A 2008, 64, 112.

Table S1. Hydrogen bonds for SCU-40

D - H ···· A^a	d(D-H) (Å)	$d(H \cdots A)$ (Å)	$d(D \cdots A)$ (Å)	<(DHA) (deg)
O2-H2…O8#1	0.82	1.76	2.518(4)	152.3
O7-H7…O4#2	0.82	1.83	2.601(5)	156.8
O10-H10···O8#3	0.82	1.66	2.457(4)	163.1
O11-H11…O4#4	0.82	1.79	2.585(4)	161.6
O14-H14…O1#5	0.82	1.76	2.576(4)	171.3
O15-H15…O9	0.82	2.07	2.828(5)	152.5
N2-H2A…O14#6	0.86	2.64	3.162(10)	120.3
N2-H2A…O17#7	0.86	2.64	3.242(9)	128.3
N4-H4A…O15#8	0.86	2.56	3.300(7)	144.2
N4-H4A…O18	0.86	2.62	3.101(7)	116.6

^a Symmetry transformations used to generate equivalent atoms: #1 2-X, -Y,1-Z; #2 1-X, -Y, 1-Z; #3 2-X, 1-Y, -Z; #4 +X, 1+Y,-1+Z; #5 1-X, 1-Y, 1-Z; #6 -1+X, +Y, +Z; #7 -1+X, 1+Y,+Z; #8 1+X, +Y, +Z; #9 +X, 1+Y, +Z.

Table S2. Hydrogen bonds for SCU-42

D-H···A ^a	d(D-H) (Å)	$d(H \cdots A)$ (Å)	$d(D \cdots A)$ (Å)	<(DHA) (deg)
O3-H3…O2#1	0.82	1.88	2.688(4)	167.5
O7-H7…O2#2	0.82	1.71	2.486(5)	156.1
O8-H8…O4	0.82	2.16	2.936(5)	157.6
N1-H1…O6	0.86	2.00	2.854(6)	170.2

^a Symmetry transformations used to generate equivalent atoms: #1 -X, 2-Y, 1-Z; #2 1-X, 2-Y, 1-Z.

Fig. S1. Powder XRD patterns of SCU-40.

Fig. S2. TGA curve of SCU-40.

Fig. S3. IR spectrum of SCU-40.

Fig. S4. Arrhenius plot of the proton conductivity of SCU-40.

Fig. S5. ORTEP plot of the asymmetric unit of SCU-40, showing the labeling scheme and the 50% probability displacement ellipsoid. Atom labels with "A" refer to symmetry-generated atoms.

Fig. S6. Ball-and-stick representations of (a) 8-ring, (b) 12-ring, and (c) 16-ring windows in SCU-40.

Fig. S7. A view of the structure of SCU-40 containing N-methylimidazolium within its channels.

Fig. S8. A view of a hydrogen-bonded tubule constructed from HPO_4 and H_2PO_4 units in SCU-40.

Fig. S9. Powder XRD patterns of SCU-42.

Fig. S10. TGA curve of SCU-42.

Fig. S11. IR spectrum of SCU-42.

Fig. S12. Arrhenius plot of the proton conductivity of SCU-42.

Fig. S13. ORTEP plot of the asymmetric unit of SCU-42, showing the labeling scheme and the 50% probability displacement ellipsoid. Atom labels with "A" refer to symmetry-generated atoms.

Fig. S14. View of the two-dimensional structure of SCU-42 intercalated with Hmim cations.