Electronic Supplementary Information (ESI)

(11 pages)

Too much water? Not enough? *In situ* monitoring of the mechanochemical reaction of copper salts with dicyandiamide

Lucia Casali,^a Torvid Feiler,^b Maria Heilmann,^b Dario Braga,^a Franziska Emmerling,^{*b} Fabrizia Grepioni^{*a}

a. Department of Chemistry "G. Ciamician", University of Bologna, 40126 Bologna, Italy; Email: fabrizia.grepioni@unibo.it

b. BAM Federal Institute for Materials Research and Testing, 12489 Berlin, Germany; Email: franziska.emmerling@bam.de

INDEX						
Powder X-ray diffraction						
• Pawley Refinements of 2 and 4 and related cell parameters						
Powder diffractograms of the solution products						
Powder diffractograms of the slurry products						
• Solid-state reaction between DCD and Cu(NO ₃) ₂ ·2H ₂ O(Unibo)	5					
In-situ monitored mechanochemical reaction between DCD	5					
and $Cu(NO_3)_2 \cdot 2H_2O$ at 20 Hz						
• Thermal stability of 1 , 3 and 4	6					
Raman Spectroscopy						
Raman spectra of DCD, 1 and 2	7					
Thermal Gravimetric Analysis (TGA)						
• TGA traces for 1 and 2	8					
• TGA traces for 3 and 4	9					
Differential Scanning Calorimetry (DSC)						
• DSC traces for 1 and 2	10					
• DSC traces for 1 and 2	11					

Powder X-ray diffraction

Fig. ESI-1. Rietveld refinements. Experimental (blue curve), calculated (red curve) and difference (grey curve) powder patterns for $[Cu(DCD)_2(OH_2)_2(NO_3)_2]$ **2** (top) and $[Cu(DCD)_2(OH_2)Cl_2]\cdot H_2O$ (**4**) (bottom). The peak marked in blue is due to an excess of DCD.

Table	ESI-1.	Cell	parameters	and	Rwp	values	for	$[Cu(DCD)_2(OH_2)_2(NO_3)_2]$	(2)	and
[Cu(DC	D)2(OH2)Cl₂]∙H	l ₂ O (4) (powde	er data	a).					

	[Cu(DCD) ₂ (OH ₂) ₂ (NO ₃) ₂], 2	$[Cu(DCD)_2(OH_2)Cl_2]\cdot H_2O, 4$
crystal system	triclinic	monoclinic
space group	P-1	P2 ₁ /c
a (Å)	10.822(1)	13.138(3)
b (Å)	6.931(7)	9.424(8)
c (Å)	5.156(1)	10.967(7)
α(°)	67.235(1)	90
β (°)	102.797(1)	113.063(1)
γ (°)	99.693(1)	90
V (Å ³)	346.32	1249.54
Rwp	7.14%	6.4%
CCDC number	CCDC 2128518	CCDC 2128519

Fig. ESI-2. Comparison between the product from solution (blue line) and the calculated pattern of **1** (red line) and **2** (black line). Extra-peaks are due to the reagent DCD.

Fig. ESI-3. Comparison between the product from solution (blue line) and the calculated pattern of **3** (red line). The extra-peaks are due to the undefined phase **X**.

Fig. ESI-4. Comparison between the slurry product (black line) and the calculated pattern of **2** (red line).

Fig. ESI-5. Comparison between the product from slurry (black line) and the calculated pattern for **4** (red line).

Fig. ESI-6. Comparison between the experimental diffractogram resulting from the milling reaction in MM200 (black line) and the one calculated on the basis of single crystal data for **1** (red line). The extra-peaks (blue stars) are due to form **2**.

Fig. ESI-7. Time-evolution of the milling reaction between DCD and $Cu(NO_3)_2 \cdot 2H_2O$ with 50 µL of water at 20 Hz (vector number *vs* milling time).

Fig. ESI-8. Conversion of compound **1** (red line, calculated pattern) into **2** is observed by variable temperature powder X-ray diffraction at ca. 80 °C (black line). Upon cooling back to room temperature the solid is stable, and does not reabsorb water from the atmosphere.

Fig. ESI-9. Crystalline **3** and **4** do not show interconversion: upon heating they both transform into the same anhydrous form, which is stable at ambient condition. [The existance of an anhydrous form as the result of dehydration of compound 3 was mentioned in ref. 16 (main text), but the phase was not structurally characterized.]

Raman Spectroscopy

Fig. ESI-10: Raman spectra of DCD (black line), 1 (red line) and 2 (blue line).

Thermal Gravimetric Analysis (TGA)

Fig. ESI-11: TGA for (top) 1 and (bottom) 2.

Fig. ESI-12: TGA for (top) 3 and (bottom) 4.

Differential Scanning Calorimetry (DSC)

Fig. ESI-13: DSC trace for 1.

Fig. ESI-14: DSC trace for 2.

Fig. ESI-15: DSC trace for 3.

Fig. ESI-16: DSC trace for 4.