Measurement and modelling solubility of amino acids and peptides in aqueous 2-propanol solutions

Hoang Tam Do^a, Patrick Franke^a, Sophia Volpert^a, Marcel Klinksiek^a, Max Thome^a, Christoph Held^{a*}

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

SUPPORTING INFORMATION

Contents

1.	Substances	1
2.	pKa values	2
3.	pH-dependent solubility	3
4.	Species distribution diagram	6
5.	PC-SAFT parameters	13
6.	Melting properties	14
7.	Solubility data and pH values	15
8.	Diffractograms.	18
9.	g ^E models vs. PC-SAFT	25
10.	References	27

^aLaboratory of Thermodynamics, TU Dortmund University, Emil-Figge-Str. 70, 44227 Dortmund, Germany. E-mail: christoph.held@tu-dortmund.de

⁺ Electronic supplementary information (ESI) available. See DOI:

* E-mail: christoph.held@tu-dortmund.de

1. Substances

Table S1 Substances, abbreviations, suppliers, CAS numbers and mass-specific purities and molar mass (M) of the solutes used in this work.

Solute	Abbrev.	Supplier	CAS no.	Purity / %	M/g·mol ⁻¹
Glycine	Gly	ROTH	56-40-6	≥ 99.0	75.070
<i>L-alanine</i>	Ala	Sigma	56-41-7	≥ 98.0	89.100
<i>L-valine</i>	Val	Alfa	72-18-4	> 99.0	117.150
L-leucine	Leu	TCI	61-90-5	> 99.0	131.180
L-isoleucine	Ile	Sigma	73-32-5	<i>≥ 99.5</i>	131.180
L-proline	Pro	Bachem	147-85-3	≥ 99.0	115.140
<i>L-serine</i>	Ser	Bachem	56-45-1	> 99.0	105.100
L-threonine	Thr	Sigma	72-19-5	≥ 98.0	119.120
L-aspartic acid	Asp	Sigma	56-84-8	≥ 99.0	133.110
L-asparagine	Asn	Sigma	70-47-3	≥ 98.0	132.120
L-glutamic acid	Glu	Sigma	56-86-0	<i>≥ 99.5</i>	147.130
<i>L-glutamine</i>	Gln	Merck	56-85-9	> 99.0	146.150
<i>L-arginine</i>	Arg	Merck	74-79-3	≥ 98.0	174.210
<i>L-histidine</i>	His	Sigma	71-00-1	≥ 99.0	155.160
L-lysine	Lys	Sigma	56-87-1	≥ 98.0	146.190
L-phenylalanine	Phe	Merck	63-91-2	<i>≥ 98.0</i>	165.200
L-tyrosine	Tyr	Bachem	60-18-4	<i>≥ 98.0</i>	181.200
L-tryptophan	Trp	Merck	73-22-3	<i>≥ 98.0</i>	204.230
<i>L-cysteine</i>	Cys	Merck	52-90-4	<i>≥ 98.0</i>	121.160
L-methionine	Met	Merck	63-68-3	<i>≥ 99.0</i>	149.210
<i>Glycyl-glycine</i>	Gly-Gly	Sigma	556-50-3	<i>≥ 99.0</i>	132.119
Glycyl-L-alanine	Gly-Ala	Sigma	3695-73-6	<i>≥ 99.0</i>	146.146
L-alanyl-glycine	Ala-Gly	Sigma	687-69-4	<i>≥ 99.0</i>	146.146
L-alanyl-L-alanine	Ala-Ala	Sigma	<i>1948-31-8</i>	<i>≥ 99.0</i>	160.173
Glycyl-L-serine	Gly-Ser	Bachem	687-38-7	<i>≥ 99.0</i>	162.145
L-seryl-glycine	Ser-Gly	Bachem	687-63-8	<i>≥ 99.0</i>	162.145
L-alanyl-L-serine	Ala-Ser	Bachem	3303-41-1	<i>≥ 99.0</i>	176.172
L-seryl-L-alanine	Ser-Ala	Bachem	6403-17-4	<i>≥ 99.0</i>	176.172
Glycyl-L-proline	Gly-Pro	Bachem	704-15-4	<i>≥ 99.0</i>	172.180
L-prolyl-glycine	Pro-Gly	Bachem	2578-57-6	<i>≥ 99.0</i>	172.180
L-alanyl-L-proline	Ala-Pro	Bachem	13485-59-1	<i>≥ 99.0</i>	186.211
L-prolyl-L-alanine	Pro-Ala	Bachem	6422-36-2	<i>≥ 99.0</i>	186.211
Glycyl-glycyl-glycine	Gly-Gly-Gly	Sigma	556-33-2	<i>≥ 98.0</i>	189.170
Glycyl-glycyl-L-alanine	Gly-Gly-Ala	Bachem	<i>19729-30-7</i>	<i>≥ 99.0</i>	203.200
Glycyl-L-alanyl-glycine	Gly-Ala-Gly	Bachem	16422-05-2	<i>≥ 99.0</i>	203.200
L-alanyl-glycyl- L-alanine	Ala-Gly-Ala	Bachem	37460-22-3	≥ 99.0	217.225
L-alanyl-L-alanyl-L-alanine	Ala-Ala-Ala	Bachem	5874-90-8	≥ 99.0	231.252
L-Leucyl-glycyl-glycine	Leu-Gly-Gly	Bachem	1187-50-4	<i>≥ 99.0</i>	245.279
Glycyl-L-leucyl-glycine	Gly-Leu-Gly	Bachem	2576-67-2	≥ 98.0	245.279
Glycyl-glycyl-L-leucine	Gly-Gly-Leu	Bachem	14857-82-0	≥ 99.0	245.279
Glycyl-L-alanyl-L-leucine	Gly-Ala-Leu	Bachem	22849-49-6	≥ 99.0	259.305
2-propanol	2-prop.	BDH Chemicals	67-63-0	≥ 98.5	60.100

2. pKa values

Table S2 pK_a -values of the amino acids measured in this work. All pK_a -values in 10 wt%, 20 wt%, and 30 wt% of 2-propanol are taken from Dey et al.¹. For the remaining components, the pK_a -values were calculated by the software Chemicalize® and assumed to be solvent-independent. The error of this calculation is assumed not to be greater than 0.01.

Component	рК _{а1}	pK _{a2}	pK _{a3}	pK _{a4}
	10 wt%: 2.42 ± 0.07	10 wt%: 9.58 ± 0.05		
Gly	20 wt%: 2.61 ± 0.07	20 wt%: 9.61 ± 0.05	-	
	30 wt%: 2.79± 0.07	30 wt%: 9.65 ± 0.05		
	10 wt%: 2.55 ± 0.06	10 wt%: 9.59 ± 0.05		
Ala	20 wt%: 2.75 ± 0.06	20 wt%: 9.61 ± 0.06	-	
	30 wt%: 2.95 ± 0.06	30 wt%: 9.63 ± 0.06		
	10 wt%: 2.47 ± 0.08	10 wt%: 9.69 ± 0.05		
Val	20 wt%: 2.68 ± 0.08	20 wt%: 9.71 ± 0.05	-	
	30 wt%: 2.89 ± 0.09	30 wt%: 9.74 ± 0.05		
	10 wt%: 2.55 ± 0.06	10 wt%: 9.52 ± 0.05		
Leu	20 wt%: 2.73 ± 0.06	20 wt%: 9.53 ± 0.05	-	
	30 wt%: 2.91 ± 0.07	30 wt%: 9.53 ± 0.06		
	10 wt%: 2.55 ± 0.06	10 wt%: 9.52 ± 0.05		
lle	20 wt%: 2.73 ± 0.06	20 wt%: 9.53 ± 0.05	-	
	30 wt%: 2.91 ± 0.07	30 wt%: 9.53 ± 0.06		
	10 wt%: 2.11 ± 0.07	10 wt%: 10.62 ± 0.04		
Pro	20 wt%: 2.27 ± 0.07	20 wt%: 10.64 ± 0.04	-	
	30 wt%: 2.44 ± 0.07	30 wt%: 10.66 ± 0.04		
	10 wt%: 2.35 ± 0.05	10 wt%: 8.97 ± 0.04		
Ser	20 wt%: 2.46 ± 0.05	20 wt%: 8.99 ± 0.04	15.17	
	30 wt%: 2.57 ± 0.05	30 wt%: 9.01 ± 0.04		
	10 wt%: 2.32 ± 0.04	10 wt%: 9.00 ± 0.05		
Thr	20 wt%: 2.45 ± 0.04	20 wt%: 9.00 ± 0.05	14.95	
	30 wt%: 2.57 ± 0.05	30 wt%: 9.01 ± 0.05		
Asp	1.70	5.11	9.61	
	10 wt%: 2.41 ± 0.06	10 wt%: 8.67 ± 0.05		
Asn	20 wt%: 2.59 ± 0.06	20 wt%: 8.70 ± 0.06	-	
	30 wt%: 2.78 ± 0.07	30 wt%: 8.73 ± 0.06		
Glu	1.88	4.27	9.54	
	10 wt%: 2.36 ± 0.09	10 wt%: 9.07 ± 0.05		
Gln	20 wt%: 2.55 ± 0.09	20 wt%: 9.10 ± 0.05		
	30 wt%: 2.75 ± 0.10	30 wt%: 9.13 ± 0.05		
Arg	2.41	9.12	12.41	
	10 wt%: 1.83 ± 0.05	10 wt%: 5.79 ± 0.07	10 wt%: 9.11 ± 0.04	
His	20 wt%: 1.97 ± 0.05	20 wt%: 5.74 ± 0.08	20 wt%: 9.12 ± 0.04	
	30 wt%: 2.10 ± 0.06	30 wt%: 6.68 ± 0.08	30 wt%: 9.12 ± 0.04	
Lys	2.74	9.44	10.29	
	10 wt%: 2.39 ± 0.04	10 wt%: 9.17 ± 0.07		
Phe	20 wt%: 2.52 ± 0.04	20 wt%: 9.20 ± 0.08	-	
	30 wt%: 2.64 ± 0.04	30 wt%: 9.23 ± 0.08		
Tyr	2.20	9.11	10.13	
Trp	2.43	9.44	-	
Cys	2.35	9.05	10.17	
	10 wt%: 2.40 ± 0.05	10 wt%: 9.18 ± 0.05		
Met	20 wt%: 2.55 ± 0.05	20 wt%: 9.19 ± 0.05	-	
	30 wt%: 2.71 ± 0.05	30 wt%: 9.21 ± 0.05		
Gly-Gly	3.52	8.14	15.32	-
Gly-Ala	3.61	8.14	13.82	-
Ala-Gly	3.66	8.39	14.32	-
, Ala-Ala	3.73	8.39	13.82	-
Gly-Ser	3.36	8.14	12.66	15.11
Ser-Glv	3.44	7.85	13.92	15.15
Ala-Ser	3.48	8.39	12.72	15.11
Ser-Ala	3,51	7.85	13.50	15.13
Gly-Pro	3,61	8,13	-	-
0., 110	5.01	0.10		

Journal Name

Pro-Gly	3.66	9.81	14.29	-
Ala-Pro	3.71	8.38	-	-
Pro-Ala	3.71	9.81	13.79	-
Gly-Gly-Gly	3.43	7.84	12.54	15.84
Gly-Gly-Ala	3.49	7.84	12.60	14.43
Gly-Ala-Gly	3.53	7.84	12.43	14.61
Ala-Gly-Ala	3.58	8.09	12.64	14.39
Ala-Ala-Ala	3.65	8.09	12.53	14.19
Gly-Gly-Leu	3.72	7.82	12.82	14.16
Gly-Leu-Gly	3.77	7.84	12.61	14.81
Leu-Gly-Gly	3.39	8.13	12.82	-
Pro-Gly-Gly	3.26	9.50	12.60	15.94
Gly-Ala-Leu	3.78	7.84	12.68	14.24

3. pH-dependent solubility

Table S3Dissociations schemes together with the corresponding Henderson Hasselbalch equation and the components. The derivationprinciple was taken from A. Avdeef ² and adapted to the way of dissociation of amino acids and peptides.

Dissociation scheme	Henderson Hasselbalch eq.	Components
$\mathrm{H}_{3}\mathrm{A}^{+} \rightleftharpoons \mathrm{H}_{2}\mathrm{A}^{\pm} \rightleftharpoons \mathrm{H}\mathrm{A}^{-} \rightleftharpoons \mathrm{A}^{2-}$	$x_{HA,tot}^{L} = x_{HA}^{L} \cdot (1 + 10^{pK_{a1}-pH} + 10^{pH-pK_{a2}} + 10^{2pH-pK_{a3}-pK_{a2}})$	Gly-Gly, Gly-Ala, Ala- Gly, Ala-Ala, Pro-Gly, Pro-Ala, Leu-Gly-Gly
$\mathrm{H}_{4}\mathrm{A}^{+}\rightleftharpoons\mathrm{H}_{3}\mathrm{A}^{\pm}\rightleftharpoons\mathrm{H}_{2}\mathrm{A}^{-}\rightleftharpoons\mathrm{H}\mathrm{A}^{2-}\rightleftharpoons\mathrm{A}^{3-}$	$\begin{split} x^{L}_{HA,tot} &= x^{L}_{HA} \cdot (1 + 10^{pK_{a1} - pH} + 10^{pH - pK_{a2}} + 10^{2pH - pK_{a3} - pK_{a2}} \\ &+ 10^{3pH - pK_{a4} - pK_{a3} - pK_{a2}}) \end{split}$	Gly-Ser, Ser-Gly, Ser- Ala, Ala-Ser, Gly-Gly- Gly, Gly-Gly-Ala, Gly- Ala-Gly, Ala-Gly-Ala, Ala-Ala-Ala, Gly-Gly- Leu, Gly-Leu-Gly

The derivation of the Henderson Hasselbalch equation is shown below with the dissociation scheme, the charge of the species (S) and the dissociation constants for the tripeptide Gly-Gly-Gly

Where $a[S^{charge}]$ represent the activity of the single charged species. The total activity a_{tot} is calculated based on the sum of the single activities shown in eq. S5

$$a_{tot} = a[S^{\pm}] + a[S^{+}] + a[S^{-}] + a[S^{2-}] + a[S^{3-}]$$
(S5)

Using the eqs. S1 - S5 the total activity can be rewritten based on the dissociation constants and the activity of the proton H⁺.

$$a_{tot} = a[S^{\pm}] + a[S^{\pm}] \cdot \frac{a[H^{+}]}{K_{a1}} + a[S^{\pm}] \cdot \frac{K_{a2}}{a[H^{+}]} + a[S^{\pm}] \cdot \frac{K_{a2}}{a[H^{+}]} \cdot \frac{K_{a3}}{a[H^{+}]} + a[S^{\pm}] \cdot \frac{K_{a3}}{a[H^{+}]} \cdot \frac{K_{a4}}{a[H^{+}]}$$
(S6)

With eqs. S7 and S8

$$a[H^+] = 10^{-pH}$$
 (S7)
 $K_{ai} = 10^{-K_{ai}}; i = 1, 2, ..., n - 1, n = number of species$ (S8)

The equation can be simplified to

$$a_{tot} = a[S^{\pm}] \cdot (1 + 10^{pK_{a1} - pH} + 10^{pH - pK_{a2}} + 10^{2pH - pK_{a2} - pK_{a3}} + 10^{3pH - pK_{a2} - pK_{a3} - pK_{a4}})$$
(S9)

This journal is © The Royal Society of Chemistry 2021

Under the assumption that all activity coefficients of the charged species are equal, the solubility in mole fraction can be calculated using eq. S10

 $x_{tot}^{L} = x_{\pm}^{L} \cdot (1 + 10^{pK_{a1} - pH} + 10^{pH - pK_{a2}} + 10^{2pH - pK_{a3} - pK_{a2}} + 10^{3pH - pK_{a4} - pK_{a3} - pK_{a2}})$ (S10)

4. Species distribution diagram

Figure S1 The pH distribution of peptides species in aqueous solution. Lines represent the contribution of species: positive net charged specie (red), zero net charge specie (blue), one negative net charged specie (green), species with double negative charge (violet).

5. PC-SAFT parameters

Table S4 PC-SAFT pure-component parameters and binary interaction parameters k_{ij} according to Equation (7). (1) amino acid/peptide, (2) water, (3) 2propanol). The ARD values between the PC-SAFT modelled solubility and the experimental solubility data in aqueous solutions with 2-propanol are listed in the last column.

	m _i ^{seg}	σ_{i}	$\sigma_i/k_{\rm B}$	ε^{AiBi}/k_{B}	κ^{AiBi}	N	k ₁₂	k ₁₃	k ₂₃	ARD
		/ Å	/ K	/ K			/ 10 ⁻²	/ 10 ⁻²	/ 10 ⁻²	/ %
H ₂ O	1.2047	а	353.94	2425.67	0.045	1/1	-	-	-4.4	-
2-propanol ^d	3.0929	3.209	208.42	2253.90	0.025	1/1	-	-	-4.4	-
Gly ^c	4.850	2.327	216.960	2598.060	0.039	1/1	-5.85 ^c	+15.50	-	1.43
Ala ^c	5.465	2.522	287.590	3176.600	0.082	1/1	-6.12 ^c	+3.75	-	8.50
Val ^b	7.485	2.589	306.410	3183.800	0.039	1/1	-7.57 ^b	-3.15	-	14.88
Leu ^b	8.304	2.700	330.000	3600.000	0.020	1/1	-6.39 ^b	-4.86	-	9.74
lle ^b	8.241	2.586	281.884	2207.529	0.001	1/1	-8.75 ^b	-2.47	-	5.21
Pro ^b	6.981	2.548	289.720	5527.750	0.036	1/1	-6.99 ^b	-	-	-
Ser ^b	7.024	2.284	236.920	2671.930	0.039	2/1	-2.57 ^b	-	-	-
Thr ^b	6.329	2.606	325.370	2519.410	0.039	2/1	-2.78 ^b	+4.58	-	9.33
Asp ^d	5.827	2.522	287.625	2544.234	0.041	2/1	+1.45 ^d	+17.63	-	10.01
Asn ^b	3.000	3.367	280.000	3265.670	0.044	1/2	+0.00 ^b	-	-	-
Glu ^d	6.831	2.560	227.192	2544.234	0.041	2/1	-4.45 ^d	+15.74	-	8.25
Gln ^d	9.289	2.360	273.555	2637.341	0.020	1/2	-5.18 ^d	+1.70	-	10.04
Arg ^b	9.908	2.657	349.710	2555.450	0.039	1/3	-1.45 ^b	-1.55	-	7.37
His ^d	9.088	2.473	281.954	2640.981	0.078	1/2	-3.89 ^d	+3.86	-	10.72
Lys ^b	11.673	2.378	301.210	3787.310	0.033	1/2	-7.07 ^b	-	-	-
Phe ^d	9.310	2.690	391.827	3206.094	0.010	1/1	-5.18 ^d	-8.57	-	2.79
Tyr ^b	8.139	2.280	289.370	2500.000	0.040	2/1	+2.27 ·10 ⁻⁴	+3.87	-	4.35
, Trp ^d	10.577	2.825	260.641	2563.249	0.024	1/2	-7.68	-0.22	-	13.64
Cvs ^b	7.739	2.384	322.910	1964.000	0.010	1/2	-2.35	-	-	-
, Met ^b	16.026	2.150	220.370	1964.000	0.010	1/2	-1.43	-	-	-
Gly-Gly	7.337	2.327	216.959	2598.060	0.039	1/1	-8.04	+13.00	-	10.84
Gly-Ala	9.154	2.445	257.126	2946.760	0.065	1/1	-7.60	+2.67	-	4.82
, Ala-Gly	9.206	2.423	249.314	2883.420	0.060	1/1	-8.13	+2.67	-	12.53
, Ala-Ala	9.824	2.522	287.587	3176.595	0.082	1/1	-7.27	-2.00	-	1.15
Gly-Ser	9.353	2.417	229.568	2645.475	0.039	2/1	-5.94	+9.20	-	6.56
, Ser-Gly	10.671	2.304	227.583	2638.186	0.039	2/1	-7.50	+4.06	-	10.23
Ala-Ser	9.583	2.537	256.471	2878.429	0.056	2/1	-6.35	-0.10	-	4.79
Ser-Ala	11.290	2.403	261.026	2924.261	0.060	2/1	-7.30	+5.31	-	25.64
Gly-Pro	10.671	2.474	262.800	4539.860	0.037	1/1	-8.49	-	-	-
, Pro-Gly	-	-	-	-	-	<i>.</i> -	-	-	-	-
Ala-Pro	-	-	-	-	-	-	-	-	-	-
Pro-Ala	11.352	2.536	288.708	4415.543	0.058	1/1	-6.48	-0.20	-	8.61
Gly-Gly-Gly	10.156	2.410	216.959	2598.061	0.039	1/1	-7.48	+11.70	-	3.58
Glv-Glv-Ala	12.754	2.412	245.150	2848.850	0.058	1/1	-9.50	+1.65	-	7.25
Glv-Ala-Glv	9.474	52.645		2800.426	0.054	, 1/1	-9.01	+9.00	-	1.49
Ala-Gly-Ala				-	-	, -	-		-	-
Ala-Ala-Ala	-	-	-	-	-	-	-		-	-
Leu-Gly-Glv	15.697	2.501	263.725	3064.420	0.030	1/1	-9.08	-3.70	-	2.91
Glv-Leu-Glv	13.725	2.612	263.270	3060.300	0.030	1/1	-7.16	+0.32	-	1.61
Glv-Glv-Leu	12.222	2,758	262.250	3100.484	0.020	, 1/1	-7.05	+5.00	-	4.56
Gly-Ala-Leu	16.350	2.567	289.303	3259.600	0.041	, 1/1	-7.01	-1.00	-	1.29

^a Temperature-dependent segment diameter σ = 2.7927+10.11 exp(-0.01775T)-1.417 exp(-0.01146T), ^bpure-component parameters from Held et al.³, ^cpure-component parameters from Chua et al.⁴, ^dpure-component parameters from this work, ^epure-component parameters from Gross and Sadowski⁵

6. Melting properties

Amino acid / peptide	T_{Oi}^{SL}	$\Delta h^{SL}_{{\it O}i}$	$a_{c_{poi}}^{L}$	$b_{c_{poi}}^L$	$a_{c_{p0i}}^{s}$	$b_{c_{p0i}}^{S}$	$\Delta c_{p0i}^{SL}(T_{\partial i}^{SL})$
	/ K	∕ kJ·mol¹	/J·mol ⁻¹ ·K ⁻²	/J·mol ^{_1} ·K ⁻¹	/J·mol ⁻¹ ·K ⁻²	/J·mol ⁻¹ ·K ⁻¹	/J·mol ⁻¹ ·K ⁻¹
Gly	569	24.96	0.225	62.681	0.266	21.033	18.59
Ala	608	25.99	0.267	64.148	0.324	24.225	5.26
Val	529	46.72	0.351	106.488	0.453	32.573	20.00
Leu	518	49.09	0.525	71.622	0.577	24.322	10.15
Ile	595	47.11	0.459	87.228	0.512	35.624	20.39
Pro	-	-	-	-	-	-	-
Ser ^c	519	32.98	0.267	121.318	0.346	31.028	49.38
Thr	587	36.64	0.379	125.276	0.406	47.019	62.18
Asp	610	35.73	0.176	213.341	0.397	37.182	41.37
Asn	-	-	-	-	-	-	-
Glu	566	48.24	0.321	147.115	0.481	32.014	24.33
Gln	589	51.96	0.474	129.528	0.500	34.849	79.19
Arg	558	28.64	0.326	265.689	0.690	27.698	34.83
His	619	56.01	0.507	152.902	0.537	21.854	112.80
Lys	-	-	-	-	-	-	-
Phe	579	60.66	0.496	280.823	0.635	15.731	184.37
Tyr	678	49.77	0.664	93.511	0.681	19.229	62.74
Trp	620	65.55	0.351	289.570	0.758	15.771	21.82
Cys	-	-	-	-	-	-	-
Met	-	-	-	-	-	-	-
Gly-Gly	<i>593</i>	42.18	0.256	185.660	0.415	41.175	50.469
Gly-Ala	551	38.38	0.253	219.937	0.474	44.123	54.219
Ala-Gly	611	47.03	0.357	169.339	0.475	41.054	55.956
Ala-Ala	606	41.44	0.396	175.923	0.503	49.918	60.971
Gly-Ser	530	47.12	0.323	222.766	0.546	38.543	65.630
Ser-Gly	553	66.37	0.293	247.192	0.564	37.212	60.533
Ala-Ser	556	46.65	0.396	217.162	0.641	33.400	47.609
Ser-Ala	609	79.03	0.328	254.405	0.585	44.293	53.470
Gly-Pro	541	25.06	0.604	96.144	0.658	31.474	35.794
Pro-Glyd	-	-	-	-	-	-	-
Ala-Pro ^e	-	-	-	-	-	-	-
Pro-Ala	624	41.93	0.525	135.934	0.631	47.121	22.582
Gly-Gly-Gly	594	52.64	0.418	244.477	0.630	48.568	70.058
Gly-Gly-Ala	592	70.15	0.503	223.719	0.675	57.131	64.940
Gly-Ala-Gly	623	60.03	0.528	223.619	0.675	55.335	77.284
Ala-Gly-Alad	-	-	-	-	-	-	-
Ala-Ala-Alad	-	-	-	-	-	-	-
Leu-Glv-Glv	530	73.03	0.390	428.149	0.885	55.252	159.252
Glv-Leu-Glv	54.5	65.4.3	0.797	251.747	0.888	63.721	138.565
Glv-Glv-Leu	521	59.63	0.621	409.351	1.028	37.967	110.302
Gly-Ala-Leu	578	77.06	0.576	394 529	0.946	69.079	111 494

Table S5 Melting properties used in PC-SAFT: melting temperature T_{0i}^{SL} , melting enthalpy Δh_{0i}^{SL} and the slope $(a_{c_{pol}}^{L}, a_{c_{pol}}^{S})$ and interception $(b_{c_{pol}}^{L}, b_{c_{pol}}^{S})$ of the heat capacity of liquid and solid, and difference in the heat capacity at melting temperature $\Delta c_{p0i}^{SL}(T_{0i}^{SL})$.

7. Solubility data and pH values

Table S6 Solubility w_{solute}^{sat} (and $w_{solute,pH=7}^{sat}$) of amino acids and peptides in aqueous-2-propanol saturated unbuffered (and shifted to pH = 7 using Henderson Hasselbalch eq. Table S3) solutions at T = 298.15 K and p = 1 atm, pH values of saturated solutions under study (uncertainties represents the standard deviations of multiple measurements, isoelectric point (pI) from the platform Chemicalize[®] and literature for amino acids by Dey et al.⁶. Additionally information about a crystal structure change using PXRD and the PC-SAFT modeled activity coefficients are given.

Solute	W _{H20}	W _{2-prop.}	W ^{sat} Solute	pH ^{sat}	pI6	$W_{Solute,pH=7}^{sat}$	PXRD transitions	γ^{L}
	$/g \cdot g^{-1}$	$/g \cdot g^{-1}$	$/g \cdot g^{-1}$			$/g \cdot g^{-1}$		
Gly	1.000	0.000	<i>0.2019 <u>+</u> 0.0020</i>	<i>6.32<u>+</u>0.04</i>	5.97		Polymorphs	0.306
	0.900	0.100	<i>0.1366 <u>+</u> 0.0018</i>	<i>5.8 <u>+</u> 0.01</i>				
	0.802	0.198	<i>0.0885 <u>+</u> 0.0021</i>	<i>6.23 <u>+</u> 0.01</i>				
	0.703	0.297	0.0587 <u>+</u> 0.002	6.26 <u>+</u> 0.01	6.00			0.004
Ala	1.000	0.000	0.1415 ± 0.0015	6.33 ± 0.02	6.00			0.236
	0.900	0.100	0.0987 <u>+</u> 0.0010 0.0640 + 0.0010	6.31 ± 0.03				0.312
	0.800	0.200	0.0049 <u>+</u> 0.0010 0.0457 + 0.0016	0.29 <u>+</u> 0.03 6 39 + 0.03				0.474
Val	1 000	0.500	0.0457 <u>+</u> 0.0010 0.0553 + 0.0006	6.08 + 0.07	596			0.750
<i>vu</i>	0.900	0.100	0.0401 + 0.0004	6.10 + 0.03	0.70			0.073
	0.800	0.200	0.0258 ± 0.0014	6.22 ± 0.05				0.104
	0.701	0.299	<i>0.0193<u>+</u> 0.0017</i>	<i>6.32 <u>+</u> 0.07</i>				0.155
Leu	1.000	0.000	<i>0.0237<u>+</u>0.0003</i>	<i>5.68 <u>+</u> 0.15</i>	<i>5.98</i>			0.130
	0.900	0.100	<i>0.0184 <u>+</u> 0.0005</i>	<i>5.56 <u>+</u> 0.04</i>				0.140
	0.800	0.200	<i>0.0133 <u>+</u> 0.0010</i>	5.69 <u>+</u> 0.04				0.175
*7	0.700	0.300	<i>0.0095 <u>+</u> 0.0013</i>	5.89 <u>+</u> 0.01	6.00			0.240
lle	1.000	0.000	0.0329 <u>+</u> 0.0003	6.22 <u>+</u> 0.14	6.02			0.043
	0.900	0.100	0.0248 <u>+</u> 0.0004	5.78 ± 0.51				0.052
	0.800	0.200	0.0173 <u>+</u> 0.0003 0.0149 + 0.0009	0.24 <u>+</u> 0.03 6 34 + 0 73				0.070
Pro	1 000	0.2.99	0.0149 - 0.0009 0.6365 + 0.0154	726 ± 0.07	630		Monohydrate	0.102
110	0.900	0.100	0.5481 + 0.0183	7.43 ± 0.01	0.00		Mononyurute	
	0.800	0.200	0.5047±0.0047	7.39 ± 0.01				
	0.701	0.299	<i>0.4510 <u>+</u> 0.0040</i>	7.38 <u>+</u> 0.01				
Ser	1.000	0.000	<i>0.2867 <u>+</u> 0.0123</i>	<i>6.01 <u>+</u> 0.02</i>	5.68		Monohydrate	
	0.900	0.100	<i>0.2128 <u>+</u> 0.0027</i>	5.93 <u>+</u> 0.01				
	0.801	0.199	<i>0.1365 <u>+</u> 0.0013</i>	<i>5.98 <u>+</u> 0.01</i>				
<i>m</i>	0.702	0.298	<i>0.0865 <u>+</u> 0.0006</i>	6.06 <u>+</u> 0.01	= < 0			0.465
Thr	1.000	0.000	0.0894 <u>+</u> 0.0008	5.87 <u>+</u> 0.01	5.60			0.465
	0.900	0.100	0.0559 <u>+</u> 0.0006 0.0220 + 0.0006	5.72 <u>+</u> 0.04 E 02 + 0.04				0.00/
	0.800	0.200	0.0339 <u>+</u> 0.0000 0.0214+0.0004	5.82 <u>+</u> 0.04 5 90 + 0.04				1.121
Asn	1.000	0.000	0.0057 + 0.0002	3.05 ± 0.01	2.77			5.819
шэр	0.900	0.100	0.0027 ± 0.0005	3.09 ± 0.03				9.098
	0.800	0.200	0.0016±0.0001	3.26 <u>+</u> 0.03				16.215
	0.700	0.300	<i>0.0009<u>+</u>0.0001</i>	<i>3.44 <u>+</u> 0.05</i>				28.003
Asn	1.000	0.000	<i>0.0267<u>+</u>0.0016</i>	5.13 <u>+</u> 0.05	5.41		Monohydrate	
	0.900	0.100	<i>0.0139<u>+</u>0.0009</i>	5.12 <u>+</u> 0.03				
	0.800	0.200	0.0083 <u>+</u> 0.0002	5.25 <u>+</u> 0.03				
Chu	0.700	0.300	0.0049 ± 0.0004	5.35 <u>+</u> 0.04	2 22			0 224
GIU	1.000	0.000	0.0088 ± 0.0003 0.0040 ± 0.0001	3.28 <u>+</u> 0.04 2 22 + 0.02	3.22			0.324
	0.900	0.100	0.0049 ± 0.0001 0.0030 ± 0.0001	3.33 <u>+</u> 0.03 3.49 + 0.03				0.401
	0.700	0.300	0.0021 ± 0.0001	3.70 ± 0.03				1.380
Gln	1.000	0.000	0.0405 + 0.0002	5.01 + 0.04	5.65			0.114
	0.900	0.100	0.0260 ± 0.0004	4.31 ± 0.06				0.156
	0.800	0.200	<i>0.0163 <u>+</u> 0.0005</i>	4.48 <u>+</u> 0.03				0.248
	0.700	0.300	<i>0.0105 <u>+</u> 0.0004</i>	4.67 <u>+</u> 0.03				0.403
Arg	1.000	0.000	<i>0.1639 <u>+</u> 0.0034</i>	<i>11.45 <u>+</u> 0.02</i>	10.8			0.967
	0.900	0.100	<i>0.1437<u>+</u> 0.0112</i>	<i>11.34 <u>+</u> 0.04</i>				1.017
	0.800	0.200	0.1108 <u>+</u> 0.0093	<i>11.40 <u>+</u> 0.04</i>				1.258
Ilia	0.700	0.300	0.0883 ± 0.0035	11.46 <u>+</u> 0.04	7 50			1.729
HIS	1.000	0.000	0.0414 ± 0.0003 0.0266 ± 0.0002	7.75 <u>+</u> 0.05 7.65 + 0.02	7.59			0.205
	0.300 N RNN	0.100	0.0200 <u>+</u> 0.0003 0.0172 + 0.0004	7.03 <u>+</u> 0.03 7.62 + 0.04				0.270
	0.700	0.300	0.0112 ± 0.0004 0.0113 ± 0.0003	7.57 + 0.04				0.720
Lvs	1.000	0.000	0.5197 + 0.1256	10.66 + 0.10	9.74			5.720
-9	0.900	0.100	0.6294 ± 0.0278	<i>10.51 ± 0.05</i>				
	0.800	0.200	0.5907 <u>+</u> 0.0110	10.49 <u>+</u> 0.04				
	0.700	0.300	<i>0.6177<u>+</u> 0.0189</i>	10.26 <u>+</u> 0.06				
Phe	1.000	0.000	<i>0.0291 <u>+</u> 0.0007</i>	5.99 <u>+</u> 0.20	5.48			1.750
	0.900	0.100	0.0216 <u>+</u> 0.0001	5.64 <u>+</u> 0.04				1.935

Please do not adjust margins

Journal Name

	0.800	0.200	<i>0.0167 ± 0.0004</i>	5.97 <u>+</u> 0.49				2.569
_	0.700	0.300	0.0163 ± 0.0007	5.75 <u>+</u> 0.03				3.784
Tyr	1.000	0.000	0.0006 ± 0.0001	5.77 <u>+</u> 0.34	5.66			11.158
	0.900	0.100	0.000444 ± 0.000016 0.000354 ± 0.000013	6.44 <u>+</u> 0.04 5 99 + 0 04				11.582 13.605
	0.700	0.200	0.000334 + 0.000013 0.000243 + 0.000026	5.99 - 0.04 5.91 + 0.05				17.208
Tro	1.000	0.000	0.0138 + 0.0001	5.08 + 0.11	5.89			0.021
r	0.900	0.100	0.0095 ± 0.0029	5.85 <u>+</u> 0.04				0.017
	0.800	0.200	<i>0.0123 <u>+</u> 0.0021</i>	5.41 <u>+</u> 0.04				0.016
	0.700	0.300	<i>0.0129<u>+</u>0.0007</i>	<i>5.15 <u>+</u> 0.04</i>				0.019
Cys	1.000	0.000	0.0813b	5.14 <u>+</u> 0.03	5.74		Polymorph	
	0.900	0.100	0.0951 ± 0.0010	5.20 <u>+</u> 0.05				
	0.800	0.200	0.0603 ± 0.0006	5.31 ± 0.04				
Moti	1.000	0.300	0.0414 ± 0.0003 0.0536 ± 0.0014	5.42 <u>+</u> 0.03 5 91 + 0.03	507			
met	0.900	0.100	0.0329 ± 0.0014	6.00 + 0.05	5.07			
	0.800	0.200	0.0298 ± 0.0054	6.00 ± 0.03				
	0.700	0.300	0.0198 <u>+</u> 0.0006	6.00 <u>+</u> 0.05				
Gly-Gly	1.000	0.000	<i>0.1948<u>+</u> 0.0040</i>	5.85 <u>+</u> 0.01	5.83	<i>0.2048 <u>+</u> 0.0040</i>		0.075
	0.900	0.100	<i>0.0944 <u>+</u> 0.0195</i>	5.79 <u>+</u> 0.01		<i>0.1004 <u>+</u> 0.0195</i>		0.139
	0.801	0.199	<i>0.0587 <u>+</u> 0.0008</i>	5.83 <u>+</u> 0.01		<i>0.0624<u>+</u> 0.0008</i>		0.308
	0.702	0.298	0.0319 ± 0.0005	5.88 <u>+</u> 0.01	5.00	0.0339 <u>+</u> 0.0005		0.615
Gly-Ala	1.000	0.000	0.4019 ± 0.0040	6.08 <u>+</u> 0.02	5.88	0.4172 <u>+</u> 0.0040		0.086
	0.901	0.099	0.3501 ± 0.0026 0.2701 ± 0.0011	6.07 ± 0.01 6.10 ± 0.01		$0.3/28 \pm 0.0020$ 0.2067 ± 0.0011		0.099
	0.800	0.200	0.2791 ± 0.0011 0.2133 ± 0.0021	0.10 <u>+</u> 0.01 6 14 + 0.01		0.2 <i>307 <u>+</u> 0.0011</i> 0.2265 + 0.0021		0.131
Ala-Glv	1.000	0.000	0.1745 ± 0.0010	5.85 ± 0.07	6.03	0.1792 ± 0.0010		0.037
ind dij	0.901	0.099	0.1213 ± 0.0002	5.85 ± 0.03	0.00	0.1252 ± 0.0002		0.052
	0.800	0.200	0.0709 <u>+</u> 0.0016	5.90 <u>±</u> 0.01		0.0732 <u>+</u> 0.0016		0.087
	0.701	0.299	<i>0.0427<u>+</u> 0.0008</i>	5.91 <u>+</u> 0.08		<i>0.0441 <u>+</u> 0.0008</i>		0.150
Ala-Ala	1.000	0.000	<i>0.2895 <u>+</u> 0.0100</i>	5.77 <u>+</u> 0.02	6.06	<i>0.2959 <u>+</u> 0.0200</i>		0.080
	0.901	0.099	<i>0.2780 ± 0.0021</i>	5.87 <u>+</u> 0.02		<i>0.2869 <u>+</u> 0.0021</i>		0.091
	0.801	0.199	0.2126 ± 0.0017	5.91 <u>+</u> 0.01		0.2195 <u>+</u> 0.0017		0.119
Che Con	0.704	0.296	0.1594 ± 0.0015	6.04 <u>+</u> 0.01 5 72 + 0.02	F 7F	0.1646 ± 0.0015		0.171
Gly-Sel	1.000	0.000	0.2894 ± 0.0110 0.2115 ± 0.0046	5.73 <u>+</u> 0.03 5 73 + 0.01	5.75	0.3029 <u>+</u> 0.0110 0.2255+0.0046		0.044 0.063
	0.803	0.100	0.2115 ± 0.0040 0.1157 ± 0.0026	5.64 + 0.01		0.1233 + 0.0040		0.122
	0.703	0.297	0.0644 ± 0.0081	5.69 ± 0.01		0.0686 ± 0.0081		0.239
Ser-Gly	1.000	0.000	0.0430 ± 0.0010	5.14 ± 0.01	5.65	0.0478±0.0010		0.010
	0.900	0.100	<i>0.0286 <u>+</u> 0.0003</i>	<i>5.20 <u>+</u> 0.01</i>		<i>0.0320 <u>+</u> 0.0003</i>		0.014
	0.800	0.200	<i>0.0162 <u>+</u> 0.0002</i>	5.26 <u>+</u> 0.01		<i>0.0182 <u>+</u> 0.0002</i>		0.023
	0.700	0.300	0.0106 ± 0.0005	<i>5.38 <u>+</u> 0.01</i>	=	<i>0.0119 <u>+</u> 0.0005</i>		0.039
Ala-Ser	1.000	0.000	0.3325 ± 0.0130	5.70 <u>+</u> 0.01 5.6 0.02	5.94	0.3401 ± 0.0130		0.026
	0.900	0.100	0.3300 ± 0.0019 0.3134 ± 0.0375	5.00 <u>+</u> 0.03 5.68 + 0.03		0.3462 <u>+</u> 0.0019 0 3242 + 0 0375		0.027
	0.000	0.200	0.2097 + 0.0274	5.00 <u>+</u> 0.05 5 75 + 0.04		0.3242 <u>+</u> 0.0373		0.030
Ser-Ala	1.000	0.000	0.0046 + 0.0010	5.09 + 0.01	5.68	0.0051 + 0.0010		0.005
	0.900	0.100	0.0024 ± 0.0006	5.10 ± 0.01		0.0027±0.0006		0.010
	0.800	0.200	<i>0.0005 <u>+</u> 0.0002</i>	5.11 <u>+</u> 0.09		<i>0.0006 <u>+</u> 0.0002</i>		0.025
	0.700	0.300	<i>0.0003 <u>+</u> 0.0003</i>	<i>5.24 <u>+</u> 0.01</i>		<i>0.0005 <u>+</u> 0.0003</i>		0.060
Gly-Pro	1.000	0.000	<i>0.6638 <u>+</u> 0.1240</i>	6.88 <u>+</u> 0.01	5.87	0.6682 <u>+</u> 0.1240		0.184
	0.900	0.100	0.5475 ± 0.0153	6.74 <u>+</u> 0.01		0.5675 <u>+</u> 0.0153	Polymorph	
	0.804	0.196	0.5182 ± 0.0053	6.80 <u>+</u> 0.01 6.91 + 0.01		0.5338 ± 0.0053		
Pro-Gly	1 000	0.300	0.3012 ± 0.0132 0.1941 ± 0.0080	0.04 <u>+</u> 0.01 6 02 + 0 01	6 74	0.3133 <u>+</u> 0.0132 0 1937 + 0 0080	Monohydrate	
110 diy	0.900	0.100	0.1560 ± 0.0021	6.05 ± 0.01	0.7 1	0.1557 ± 0.0021	mononyurate	
	0.802	0.198	0.0987 ± 0.0067	6.08 ± 0.01		0.0985 ± 0.0067		
	0.701	0.299	0.0691 <u>+</u> 0.0029	6.14 ± 0.01		0.0690±0.0029		
Ala-Pro	1.000	0.000	<i>0.5141 <u>+</u> 0.0150</i>	<i>6.39 <u>+</u> 0.01</i>	6.05	<i>0.5221 <u>+</u> 0.0150</i>	Polymorph	
	0.900	0.100	<i>0.5342 <u>+</u> 0.0078</i>	<i>6.36 <u>+</u> 0.05</i>		<i>0.5523 <u>+</u> 0.0078</i>		
	0.800	0.200	<i>0.4898 <u>+</u> 0.0159</i>	<i>6.42 <u>+</u> 0.04</i>		<i>0.5057<u>+</u>0.0159</i>		
Duo Al-	0.700	0.300	0.4733 <u>+</u> 0.0077	6.46 <u>+</u> 0.03	671	0.4882 <u>+</u> 0.0077		0 1 2 2
Pro-Ala	1.000	0.000	U.U518 <u>+</u> U.UU1U 0.0277 + 0.0000	0.03 <u>+</u> 0.01 5 ga + a a 2	0.76	0.0310 <u>+</u> 0.0010 0.0376 + 0.0000		U.123
	0.900 N QNN	0.100 A 200	0.0377 <u>T</u> 0.0008 0.0210 + 0.0009	5.70 <u>T</u> 0.03 6 00 + 0 01		0.0370 <u>T</u> 0.0008 N N2NA + N NNNA		0.133 A 220
	0.000	0.200 N 3NN	0.0210 ± 0.0000	6.11 + 0.04		0.0131 + 0.0008		0.230 N 393
Glv-Glv-Glv	1.000	0.000	0.0612 + 0.0010	5.65 + 0.02	5.64	0.0688 + 0.0010		0.128
	0.900	0.100	0.0308 ± 0.0008	5.69 ± 0.03		0.0348 ± 0.0008		0.206
	0.800	0.200	0.0144 ± 0.0005	5.74 ± 0.03		0.0162 ± 0.0005		0.377
	0.700	0.300	<i>0.0072<u>+</u> 0.0009</i>	5.83 <u>+</u> 0.03		<i>0.0082<u>+</u> 0.0009</i>		0.673
Gly-Gly-Ala	1.000	0.000	<i>0.0448 <u>+</u> 0.0010</i>	<i>5.43 ± 0.02</i>	5.67	<i>0.0503 <u>+</u> 0.0010</i>		0.004
	0.900	0.100	0.0254 <u>+</u> 0.0006	5.50 <u>+</u> 0.03		<i>0.0287 <u>+</u> 0.0006</i>		0.006
	0.800	0.200	<i>0.0122<u>+</u>0.0002</i>	5.56 <u>+</u> 0.04		<i>0.0137<u>+</u>0.0015</i>		0.013

	0.700	0.300	<i>0.0068 <u>+</u> 0.0001</i>	5.69 <u>+</u> 0.04		<i>0.0077<u>+</u>0.0016</i>		0.027
Gly-Ala-Gly	1.000	0.000	<i>0.0491 <u>+</u> 0.0010</i>	4.65 <u>+</u> 0.01	5.69	<i>0.0520 <u>+</u> 0.0010</i>		0.042
	0.900	0.100	<i>0.0265 <u>+</u> 0.0002</i>	4.70 <u>+</u> 0.04		<i>0.0284 <u>+</u> 0.0002</i>		0.073
	0.800	0.200	<i>0.0129<u>+</u>0.0007</i>	4.73 <u>+</u> 0.04		<i>0.0139 <u>+</u> 0.0007</i>		0.158
	0.700	0.300	0.0068 <u>+</u> 0.0003	4.86 <u>+</u> 0.05		<i>0.0074 <u>+</u> 0.0003</i>		0.339
Ala-Gly-Ala	1.000	0.000	<i>0.4059<u>+</u> 0.0010</i>	5.86 <u>+</u> 0.02	5.84	<i>0.4232 <u>+</u> 0.0010</i>	Monohydrate	
	0.900	0.100	<i>0.3563 <u>+</u> 0.0013</i>	5.91 <u>+</u> 0.02		<i>0.3822 <u>+</u> 0.0013</i>		
	0.800	0.200	<i>0.2775 <u>+</u> 0.0806</i>	5.94 <u>+</u> 0.01		<i>0.2974 <u>+</u> 0.0806</i>		
	0.700	0.300	<i>0.2107<u>+</u> 0.0390</i>	5.95 <u>+</u> 0.01		<i>0.2256 <u>+</u> 0.0390</i>		
Ala-Ala-Ala	1.000	0.000	<i>0.0946<u>+</u> 0.0040</i>	5.51 <u>+</u> 0.01	5.87	<i>0.1002 <u>+</u> 0.0040</i>	Hemihydrate	
	0.900	0.100	<i>0.0947±0.0019</i>	<i>5.15 ± 0.04</i>		<i>0.1017<u>+</u> 0.0019</i>		
	0.800	0.200	<i>0.0584<u>+</u> 0.0030</i>	5.41 <u>+</u> 0.04		<i>0.0632 <u>+</u> 0.0030</i>		
	0.700	0.300	<i>0.0328<u>+</u> 0.0015</i>	5.46 <u>+</u> 0.04		<i>0.0355 <u>+</u> 0.0015</i>		
Leu-Gly-Gly	1.000	0.000	<i>0.2812<u>+</u> 0.0030</i>	5.42 <u>+</u> 0.02	5.76	<i>0.2940 <u>+</u> 0.0030</i>		0.004
	0.900	0.100	<i>0.2470 <u>+</u> 0.0127</i>	5.51 <u>+</u> 0.04		<i>0.2632 <u>+</u> 0.0127</i>		0.004
	0.800	0.200	<i>0.2181 <u>+</u> 0.0037</i>	5.55 <u>+</u> 0.04		<i>0.2325 <u>+</u> 0.0030</i>		0.005
	0.700	0.300	<i>0.1650 <u>+</u> 0.0031</i>	5.64 <u>+</u> 0.04		<i>0.1760 <u>+</u> 0.0019</i>		0.006
Gly-Leu-Gly	1.000	0.000	<i>0.0625 <u>+</u> 0.0013</i>	5.34 <u>+</u> 0.01	5.81	<i>0.0693 <u>+</u> 0.0010</i>		0.070
	0.900	0.100	<i>0.0561 <u>+</u> 0.0105</i>	5.56 <u>+</u> 0.09		<i>0.0630 <u>+</u> 0.0105</i>		0.072
	0.800	0.200	0.0460 <u>+</u> 0.0072	5.62 <u>+</u> 0.06		<i>0.0517<u>+</u> 0.0072</i>		0.092
	0.700	0.300	<i>0.0252<u>+</u> 0.0044</i>	5.73 <u>+</u> 0.06		<i>0.0283 <u>+</u> 0.0044</i>		0.136
Gly-Gly-Leu	1.000	0.000	<i>0.1676<u>+</u> 0.0040</i>	5.71 <u>+</u> 0.01	5.77	<i>0.1866 <u>+</u> 0.0040</i>		0.186
	0.900	0.100	<i>0.1176<u>+</u> 0.0016</i>	5.75 <u>+</u> 0.03		<i>0.1325 <u>+</u> 0.0016</i>		0.231
	0.800	0.200	<i>0.0798<u>+</u> 0.0021</i>	5.87 <u>+</u> 0.04		<i>0.0899 <u>+</u> 0.0021</i>		0.366
	0.720	0.280	<i>0.0680 <u>+</u> 0.0019</i>	<i>6.01 <u>+</u> 0.04</i>		<i>0.0764 <u>+</u> 0.0019</i>		0.649
Gly-Ala-Leu	1.000	0.000	<i>0.0141 <u>+</u> 0.0010</i>	5.89 <u>+</u> 0.01	5.81	<i>0.0158<u>+</u> 0.0010</i>		0.041
	1.000	0.000	0.0096 <u>+</u> 0.0008	5.92 <u>+</u> 0.02		<i>0.0108<u>+</u> 0.0008</i>		0.056
	0.900	0.100	0.0068 <u>+</u> 0.0006	5.94 <u>+</u> 0.02		<i>0.0076<u>+</u> 0.0006</i>		0.102
	0.800	0.200	<i>0.0028 <u>+</u> 0.0019</i>	5.97 <u>+</u> 0.01		<i>0.0032 <u>+</u> 0.0019</i>		0.208

^a For Met no experimental determined melting properties was possible to measure using FSC, ^b solubility data measured from previous work⁷, ^c solubility data measured from previous work⁸, ^d Bowden,2018⁹

8. Diffractograms

PXRD measurements of pure amino acids and the amino acids in solid phase equilibrated with saturated solution

Figure S2: PXRD diffractograms of amino acids and peptides. Green line: pure component; blue line: solid phase of the supersaturated solution containing pure water; black line: solid phase of the supersaturated solution containing a 2-propanol fraction of 10 wt%; dark grey line: solid phase of the supersaturated solution containing a 2-propanol fraction of 20 wt%; light grey line: solid phase of the supersaturated solution containing a 2-propanol fraction of 20 wt%; light grey line: solid phase of the supersaturated solution containing a 2-propanol fraction of 20 wt%; light grey line: solid phase of the supersaturated solution containing a 2-propanol fraction of 20 wt%; light grey line: solid phase of the supersaturated solution containing a 2-propanol fraction of 30 wt%; red lines: diffractrograms from Cambridge Crystallographic Data Centre (CCDC).

9. g^E models vs. PC-SAFT

In the current work, the solubility of 15 proteinogenic amino acids and 18 peptides in water and in water+-2-propanol was modeled using different g^E models (Wilson, NRTL, UNIQUAC) in comparison with PC-SAFT. As an example only the results for the amino acid Glu is shown:.

Figure S3: (a) The temperature-dependent solubilities of Glu at p = 1 atm. \bigcirc : represent the own solubility measurement, literature solubility data \blacktriangle : Matsuo¹⁰ and \bigstar : melting temperature of Glu. (b) The Glu solubility dependent on the 2-propanol weight fraction at T = 298.15 K and p = 1 atm in unbuffered solutions pH = pI in a pseudo-binary plot. Pepresents the own solubility measurements. On the x-axis the solute-free weight fraction of water for aqueous 2-propanol solutions is shown. On the y-axis the solubility in the ternary system of the amino acid is shown. Lines are modeling results using PC-SAFT (thick solid lines), Wilson (dashed lines), NRTL (dashed-dotted lines), UNIQUAC (thin solid lines).

The binary parameters between component (1) and water (2) were fitted to aqueous solubility data shown in Figure S3 (a). The binary parameters between water (2) and 2-propanol (3) were separately fitted to vapor-liquid data and shown in Table S7. In a last step the binary parameters of component (1) and 2-propanol (3) were fitted to aqueous solubility data with 2-propanol contributions shown in Figure S3 (b).

Journal Name

Table S7 Modeling parameters with Wilson, NRTL and UNIQUAC of binary and ternary systems with Glu as component (1) + water (2) + 2-propanol (3). For Wilson, NRTL and UNIQUAC the binary parameters were simultaneously fitted to the experimental determined activity coefficients. The ARD values including all the number of experimental points (NP) and the corresponding literature solubility data were determined for temperature-dependent solubility in binary mixtures (second column); for ternary systems ARD includes only data at T = 298.15 K, but the mass fraction of 2-propanol in water varies.

	Binary mi	Binary mixture component(1)+water(2)				Ternary mixture component(1)+water(2)+2-propanol(3)				
	$\Delta \lambda_{12}$	$\Delta\lambda_{21}$		ARD	$\Delta \lambda_{13}$	$\Delta \lambda_{31}$	$\Delta \lambda_{23}$	$\Delta\lambda_{32}$		ARD
Wilson			NP/ ^{Lit.}						NP/ ^{Lit.}	
	$/J \cdot mol^{-1}$	$/J \cdot mol^{-1}$		/ %	$/J \cdot mol^{-1}$	$/J \cdot mol^{-1}$	$/J \cdot mol^{-1}$	$/J \cdot mol^{-1}$		/ %
	-672.28	-1562.59	23/10	12.73	25000.00	25000.00	7567.00	1265.58	3/11	100.42
	Δg_{12}	Δg_{21}		ARD	Δg_{13}	Δg_{31}	Δg_{23}	Δg_{32}		ARD
NRTL			NP/ ^{Lit.}						NP/ ^{Lit.}	
	$/J \cdot mol^{-1}$	$/J \cdot mol^{-1}$		/ %	$/J \cdot mol^{-1}$	$/J \cdot mol^{-1}$	$/J \cdot mol^{-1}$	$/J \cdot mol^{-1}$		/ %
	-4914.93	6075.15	23/10	5.80	14969.02	14618.02	8463.11	-344.29	3/11	39.83
	Δu_{12}	Δu_{21}		ARD	Δu_{13}	Δu_{31}	Δu_{23}	Δu_{32}		ARD
UNIQUAC			NP/ ^{Lit.}						NP/ ^{Lit.}	
	$/J \cdot mol^{-1}$	$/J \cdot mol^{-1}$		/ %	$/J \cdot mol^{-1}$	$/J \cdot mol^{-1}$	$/J \cdot mol^{-1}$	$/J \cdot mol^{-1}$		/ %
	-1432.46	559.12	23/10	8.59	20000.00	20000.00	1145.06	841.15	3/11	23.51

For binary mixtures (component + water) the modeling performance of all g^E models as well as PC-SAFT are in good agreement with the experimental data of Glu. For ternary mixtures the modeling performances differ. The Wilson model shown qualitatively good results but not quantitatively. Additionally the fit of binary parameters between component (1) and 2-propanol (3) was set to a maximum value of 25000 J mol⁻¹. On the one hand higher values don't lead to significantly better results and on the other hand higher values would not be physically reasonable. The NRTL model shows better results compared to the Wilson model. Here the lowest ARD values could be determined but the modeling results are still not in a good agreement with the experimental solubility data. The UNIQUAC model shows also better results comparing to NRTL. But as applied already in the Wilson model, the binary parameters between component (1) and 2-propanol (3) was also set to a maximum value of 20000 J mol⁻¹.

Glu is only one example shown here. The overall mean ARD of all amino acids and peptides in binary and ternary mixtures are listed in Table S8.

Table S8 Average relative deviation (ARD) between modeling results and experimental solubility of amino acids and peptides for g^E models (Wilson, NRTL, UNIQUAC) and PC-SAFT.

	Component(1)+water(2)	Component(1)+water(2)+2-propanol(3)		
	Amino acids Peptides		Amino acids	Peptides	
Model	ARD / %	ARD / %	ARD / %	ARD / %	
Wilson	19.71	6.95	50.15	118.42	
NRTL	18.61	6.78	28.61	56.30	
UNIQUAC	15.00	8.10	28.27	33.74	
PC-SAFT	5.63	5.69	7.80	7.31	

The accuracy of the experimental uncertainty was determined to be about RMSD = 3%. It can be clearly seen that the PC-SAFT modeling shows a better modeling performance with less binary parameters (k_{13}). To summarize, PC-SAFT is recommended for modeling solubility of biomolecules such as amino acids and peptides in broad temperature ranges and/or upon co-solvent addition. In contrast, among the g^E models only UNIQUAC allowed a reasonable modeling result while Wilson and NRTL is not recommended for modeling the systems under study. It would be interesting to prove or disprove this finding also for other systems in the future.

10. References

- 1. B. P. Dey, S. Dutta, S. C. Lahiri, Indian Journal of Chemistry, 1982(Vol. 21A), 886.
- 2. A. Avdeef, Adv Drug Deliv Rev, 2007, 59(7), 568.
- 3. C. Held, L.F. Cameretti and G. Sadowski, Ind. Eng. Chem. Res., 2011, 50(1), 131.
- 4. Y.Z. Chua, H.T. Do, C. Schick, D. Zaitsau and C. Held, RSC Adv., 2018, 8(12), 6365.
- 5. J. Gross and G. Sadowski, Ind. Eng. Chem. Res., 2001, 40(4), 1244.
- 6. R.L. Lundblad and F.M. Macdonald, *Handbook of biochemistry and molecular biology,* CRC Press, Boca Raton, FL 33487-2742, 2010.
- 7. H.T. Do, Y.Z. Chua, Kumar A., D. Pabsch, M. Hallermann, D. Zaitsau, C. Schick and C. Held, RSC Adv., 2020(10), 44205.
- 8. H.T. Do, Y.Z. Chua, J. Habicht, Klinksiek M., S. Volpert, D. Pabsch, M. Hallermann, M. Thome, D. Zaitsau, C. Schick and C. Held, *Ind. Eng. Chem. Res.*, 2021.
- 9. N.A. Bowden, J.P.M. Sanders and M.E. Bruins, J Chem Eng Data, 2018, 63(3), 488.
- 10. H. Matsuo, Y. Suzuki and S. Sawamura, Fluid Phase Equilibria, 2002(200), 227.
- 11. H.T. Do, P. Franke, S. Volpert, M. Klinksiek and C. Held, Phys. Chem. Chem. Phys. (in revision), 2021.