Electronic Supplementary Information

Infrared characterization of the products and the rate coefficient of the reaction

between Criegee intermediate CH₂OO and HCl

Wei-Che Liang,^a Pei-Ling Luo,^{*ab} and Yuan-Pern Lee^{*abc}

^a Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan.

^b Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan.

^c Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 300093, Taiwan.

**E-mail: plluo@gate.sinica.edu.tw* (P.-L. Luo) **E-mail: yplee@nycu.edu.tw* (Y.-P. Lee)

ESI includes 1 note, 6 tables, and 10 figures.

Note S1. Simulation of Bands A2-A4 of gauche-CMHP

With the PGOPHER program,¹ we simulated the fundamental band of each vibrational mode by using rotational parameters *A*", *B*", and *C*", ratios of rotational parameters *A*'/*A*", *B*'/*B*", and *C*/*C*" and *a*/*b*/c type ratios of each mode predicted with the B3LYP/aug-cc-pVTZ-pp method, as listed in Tables S3 and S4 (ESI†), $J_{max} = 200$, T = 298 K, and a Gaussian width 0.32 cm⁻¹ (corresponding to the instrument resolution 0.25 cm⁻¹ after apodization). The projections of the dipole derivatives for each vibrational mode of *gauche*-CMHP onto rotational axes *a*, *b* and *c* determine the weighting of bands of types *a*, *b*, and *c* in each vibrational absorption band. For an improved simulation, we employed ratios of calculated rotational parameters *A*'/*A*", *B*'/*B*", and *C*/*C*" and experimental values of *A*", *B*", and *C*" derived from microwave experiments by Cabezas and Endo,² Simulated *a*/*b*/c-type spectra and the resultant rotational contours for v₅, v₆, v₈, and v₁₀ of *gauche*-³⁵Cl-CMHP are shown in Fig. S4 (ESI†).

Because information was lacking, we assumed that the rotational contours and the IR intensities of the hot bands are the same as the fundamental band. The contours of the hot bands were consequently derived from the fundamental band with intensities scaled according to a Boltzmann distribution and positions shifted according to anharmonicity; the shifts depend on the difference in transition wavenumbers between the fundamental band and the hot bands. We calculated, as initial estimates, the Boltzmann distributions of the excited states of the low-energy modes according to the predicted anharmonic vibrational energies; the shifts among hot bands in a series were initially assumed to be constant. For *gauche*-CMHP, the two least-energy vibrational modes v_{14} and v_{15} were considered; their v = 1 states have energies 150 and 284 cm⁻¹, respectively, above the ground state. A least-squares fit was performed on systematically varying these parameters within limited ranges in position (≤ 5 cm⁻¹) and intensities (within $\pm 10\%$) for each band. It should be noted that the decomposition of observed spectra to several series of transitions is not unique; such decomposition is only used as an attempt to explain that the observed broad rotational contours might be due to contributions of the hot bands and isotopic species.

For band A₂, contributions from the fundamental band v₈, 8¹₀, hot bands associated with v₁₅, 8¹₀15^{*a*}_{*a*} with a = 1-4, and v₁₄, 8¹₀14^{*a*}_{*a*} with a = 1-2, were considered, as shown in Fig. S7(b), ESI[†]. Furthermore, *gauche*-³⁷Cl-CMHP also contribute, with 8¹₀, 8¹₀15^{*a*}_{*a*} with a = 1-3, and 8¹₀14¹₁; a red shift of 1.2 cm⁻¹ from *gauche*-³⁵Cl-CMHP for 8¹₀ was predicted from calculation, as shown in Fig. S7(c), ESI[†]. For the simulation of bands A₃ and A₄, we did not include contributions of *gauche*-³⁷Cl-CMHP for Simplicity.

Mada		gauche	-CMHP	_	anti-CMHP		
Mode	Harn	nonic	Anharmonic	Harn	nonic	Anharmonic	
V 1	3717	(36)	3539	3748	(56)	3565	
v_2	3170	(1)	3022	3125	(10)	2978	
V 3	3091	(9)	2971	3059	(21)	2885	
V 4	1456	(2)	1417	1511	(3)	1472	
V 5	1391	(58)	1353	1371	(16)	1361	
V 6	1322	(39)	1292	1340	(73)	1291	
v_7	1267	(9)	1236	1209	(3)	1182	
v 8	1079	(87)	1047	1050	(44)	1018	
V 9	996	(1)	977	1004	(0)	992	
V 10	878	(20)	855	921	(9)	897	
v_{11}	664	(131)	655	781	(90)	761	
V 12	494	(23)	484	398	(1)	392	
V 13	366	(7)	359	271	(7)	317	
V 14	260	(107)	284	240	(106)	137	
V 15	143	(19)	150	93	(4)	85	

Table S1 Harmonic and anharmonic vibrational wavenumbers (cm⁻¹) and IR intensities (km mol⁻¹) of *gauche*-CMHP and *anti*-CMHP calculated with B3LYP/aug-cc-pVTZ

Modo		gauch	e-MCP		CH ₂ ClO		
Mode	Harmonic		Anharmonic	Anharmonic Harmonic		Anharmonic	
v ₁	3128	(7)	2983	2942	(4)	2731	
v ₂	3105	(19)	2960	2914	(38)	2723	
V 3	3028	(20)	2949	1308	(57)	1312	
V 4	1500	(13)	1498	1226	(10)	1166	
V 5	1467	(9)	1425	1136	(48)	1115	
V 6	1445	(2)	1431	1035	(0)	1008	
v_7	1202	(3)	1173	648	(160)	627	
ν_8	1167	(2)	1139	647	(2)	752	
V 9	986	(33)	952	381	(5)	371	
V 10	845	(23)	828				
V 11	600	(44)	583				
V 12	477	(1)	470				
V13	349	(8)	346				
V 14	201	(2)	180				
V 15	140	(2)	137				

Table S2 Harmonic and anharmonic vibrational wavenumbers (cm⁻¹) and IR intensities (km mol⁻¹) of *gauche*-MCP and CH₂ClO calculated with B3LYP/aug-cc-pVTZ

Mode	gau	che-CN	IHP	aı	<i>ıti-</i> CMF	łΡ	ga	gauche-MCP		
WIOUC	A'	<i>B</i> '	C	<i>A</i> '	<i>B</i> '	C	<i>A</i> '	<i>B</i> '	<i>C</i> '	
V 1	0.486	0.114	0.099	1.178	0.087	0.083	0.569	0.114	0.103	
v ₂	0.487	0.114	0.099	1.180	0.087	0.083	0.568	0.114	0.103	
V 3	0.487	0.114	0.099	1.179	0.087	0.083	0.568	0.114	0.103	
V 4	0.488	0.113	0.099	1.177	0.087	0.083	0.570	0.114	0.103	
V 5	0.488	0.113	0.099	1.181	0.087	0.082	0.577	0.114	0.103	
v 6	0.487	0.113	0.099	1.179	0.087	0.082	0.556	0.114	0.103	
v_7	0.486	0.114	0.099	1.176	0.087	0.083	0.569	0.114	0.103	
v 8	0.487	0.113	0.099	1.184	0.086	0.082	0.564	0.114	0.103	
V 9	0.486	0.113	0.099	1.171	0.086	0.082	0.564	0.113	0.103	
v_{10}	0.487	0.113	0.099	1.179	0.086	0.082	0.568	0.113	0.103	
v_{11}	0.488	0.113	0.099	1.177	0.086	0.082	0.565	0.113	0.103	
v ₁₂	0.487	0.113	0.099	1.185	0.086	0.082	0.569	0.113	0.103	
V 13	0.488	0.113	0.099	1.208	0.087	0.082	0.567	0.113	0.103	
v_{14}	0.488	0.113	0.099	1.186	0.087	0.082	0.570	0.113	0.103	
V 15	0.493	0.113	0.099	1.145	0.087	0.083	0.577	0.113	0.103	
	A"	<i>B</i> ''	<i>C</i> "	A"	<i>B</i> ''	<i>C</i> "	A"	<i>B</i> ''	<i>C</i> "	
v = 0	0.488	0.113	0.099	1.181	0.087	0.083	0.568	0.114	0.103	
scaled ^a	0.479	0.120	0.103	1.159	0.092	0.086	0.557	0.112	0.101	

Table S3 Rotational parameters (in cm⁻¹) of the ground state and vibrationally excited states (v = 1) of *gauche*-CMHP, *anti*-CMHP, and *gauche*-MCP predicted with the B3LYP/aug-cc-pVTZ method

^{*a*}The rotational parameters scaled with those derived from the microwave spectrum of *gauche*-CMHP.²

Mode	gauche-CMHP			an	anti-CMHP			gauche-MCP		
	а	b	С	а	b	С	а	b	С	
ν_1	0.00	0.80	0.20	0.53	0.08	0.39	0.01	0.00	0.99	
V 2	0.25	0.12	0.63	0.00	0.00	0.99	0.51	0.25	0.24	
V 3	0.04	0.62	0.34	0.00	0.96	0.03	0.39	0.43	0.18	
V 4	0.02	0.12	0.87	0.85	0.14	0.01	0.82	0.00	0.18	
V 5	0.31	0.64	0.05	0.97	0.03	0.01	0.13	0.63	0.24	
V 6	0.90	0.06	0.04	0.87	0.12	0.00	0.59	0.40	0.01	
v_7	0.59	0.13	0.28	0.25	0.04	0.71	0.17	0.40	0.43	
V 8	0.92	0.01	0.07	0.43	0.57	0.00	0.44	0.36	0.20	
ν9	0.08	0.50	0.42	0.42	0.12	0.47	0.66	0.19	0.15	
V 10	0.87	0.04	0.09	0.75	0.24	0.01	0.66	0.31	0.03	
V 11	0.82	0.17	0.01	0.98	0.02	0.00	0.95	0.05	0.00	
V 12	1.00	0.00	0.00	0.68	0.28	0.04	0.06	0.92	0.02	
V 13	0.59	0.30	0.11	0.41	0.51	0.08	0.89	0.09	0.02	
V 14	0.45	0.00	0.55	0.12	0.67	0.21	0.67	0.18	0.15	
V 15	0.79	0.20	0.01	0.48	0.49	0.04	0.44	0.56	0.00	

Table S4 Ratios of *a*-, *b*-, and *c*-types of vibrational bands for each vibrational mode of *gauche*-CMHP, *anti*-CMHP, and *gauche*-MCP predicted with the B3LYP/aug-cc-pVTZ method

Sata	Erret	$[CH_2I_2]_0$	$[CH_2I]_0$	$[CH_2OO]_0$	$[HCl]_0$	[O ₂]	$k^{\rm I}$, exponential fit	$k^{\rm I}$, model fit
501	Expi.	/mTorr	$/10^{13 b}$	/10 ^{13 b}	$/10^{14 b}$	/Torr	$/10^3 \ s^{-1}$	$/10^3 \ s^{-1}$
1	1	10.6	1.38	1.10	0.91	5.2	7.2	4.7
	2	10.6	1.38	1.10	6.22	5.2	34.0	29.5
	3	10.6	1.38	1.10	12.46	5.2	66.2	60.8
	4	10.6	1.38	1.10	1.53	5.2	10.9	7.6
	5	10.6	1.38	1.10	3.09	5.2	18.1	15.1
2	6	10.0	1.30	1.03	4.68	5.2	26.0	22.6
	7	10.0	1.30	1.03	9.33	5.2	49.9	45.5
	8	10.0	1.30	1.03	15.57	5.2	79.3	73.0
	9	10.0	1.30	1.03	7.78	5.2	42.2	38.2
3	10	16.6	2.15	1.70	12.41	8.2	65.1	58.4
	11	16.6	2.15	1.70	2.50	8.2	16.0	12.5
	12	16.6	2.15	1.70	4.94	8.2	29.0	25.4
	13	16.6	2.15	1.70	19.88	8.2	103.2	97.4
4	14	16.1	2.09	1.66	1.45	8.2	10.3	6.9
	15	16.1	2.09	1.66	7.49	8.2	40.1	36.9
	16	16.1	2.09	1.66	14.92	8.2	77.2	72.5
	17	16.1	2.09	1.66	9.94	8.2	54.9	48.8

Table S5 Summary of experimental conditions and fitted rate coefficients

^{*a*} For all experiments, a CH₂OO line at 896.876 cm⁻¹ was probed and the photolysis beam has fluence 20 mJ cm⁻². ^{*b*} in unit of molecule cm⁻³.

	Reaction	Rate coefficient ^a	Ref.
k _{1a} ^b	$CH_2I + O_2 \rightarrow CH_2OO + I$	${1-0.47/(1+3.2\times10^{-18} [M])}\times1.6\times10^{-12}$ /(1+1.1×10 ⁻¹⁹ [M])	3
k1b ^b	$CH_2I + O_2 \rightarrow CH_2IOO$	1.6×10 ⁻¹² - 1.6×10 ⁻¹² /(1+1.1×10 ⁻¹⁹ [M])	3
k_{1c}^{b}	$\mathrm{CH}_2\mathrm{I} + \mathrm{O}_2 \longrightarrow \mathrm{CH}_2\mathrm{O} + \mathrm{IO}$	4.0×10^{-13}	4
$k_{1d}{}^b$	$CH_2I + O_2 \rightarrow other \ products$	$1.6 \times 10^{-12} - k_{1a} - k_{1b} - k_{1c}$	3
k_{2a}	$\rm CH_2OO + I \rightarrow \rm CH_2I + O_2$	55×1.6×10 ⁻¹² /(1+1.1×10 ⁻¹⁹ [M])	3
k_{2b}	$CH_2OO + I \rightarrow CH_2IOO$	$55 \times \{1.6 \times 10^{-12} - 1.6 \times 10^{-12} / (1 + 1.1 \times 10^{-19} [M])\}$	3
k_{2c}	$CH_2OO + I \rightarrow CH_2O + IO$	9.0×10 ⁻¹²	3
<i>k</i> ₃	$CH_2OO + CH_2I \rightarrow C_2H_4I + O_2$	6.3×10^{-11}	5
k _{self}	$\rm CH_2OO + \rm CH_2OO \rightarrow \rm 2CH_2O + \rm O_2$	9.2×10 ⁻¹¹	6
<i>k</i> 5	$IO + IO \rightarrow I_2 + O_2$	9.9×10 ⁻¹¹	7
k_6	$\mathrm{CH_2IOO} + \mathrm{I} \rightarrow \mathrm{CH_2IO} + \mathrm{IO}$	3.5×10^{-11}	8
k_7	$\mathrm{CH_2IOO} + \mathrm{CH_2IOO} \rightarrow \mathrm{2CH_2IO} + \mathrm{O_2}$	9.0×10 ⁻¹¹	8
k_8	$\mathrm{CH_2IO}{\rightarrow}\mathrm{CH_2O}{+}\mathrm{I}$	$10^6 \ {\rm s}^{-1}$	8
<i>k</i> 9	$CH_2OO + HCl \rightarrow products$	$k^{\mathrm{I}} = k_9 \times [\mathrm{HC1}]_0$, fitted	

Table S6 Kinetic model and rate coefficients employed in the fitting for $CH_2OO + HCl$

^{*a*} Rate coefficient in cm³ molecule⁻¹ s⁻¹, unless specified, [M] in molecule cm⁻³. ^{*b*} $k_{1a} + k_{1b} + k_{1c} + k_{1d} = 1.6 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Fig. S1 Difference spectra at resolution 1.0 cm^{-1} recorded upon photolysis at 308 nm of a flowing mixture of CH₂I₂/HCl/N₂/O₂ (0.07/0.04/54.0/46.0, $P_T = 100.1$ Torr, 298 K). (a)–(c) Spectra recorded 0–5, 5–10, and 15–20 µs after irradiation, respectively.

Fig. S2 Difference absorbance spectra at resolution 1.0 cm^{-1} recorded upon photolysis at 308 nm of a flowing mixture of CH₂I₂/HCl/N₂/O₂ (0.08/0.04/51.7/49.2, $P_T = 101.0$ Torr, 298 K). (a)–(c) Spectra recorded 0–50, 400–450, and 2000–2050 µs after irradiation, respectively. (d) IR spectrum of H₂CO. (e)–(g) Processed spectra of (a)–(c) with absorption of H₂CO subtracted; features B and lines of group C are indicated.

Fig. S3 (a) Difference absorbance spectrum recorded upon 308-nm photolysis of a flowing mixture of CH₂I₂/HCl/N₂/O₂ (0.12/0.6/54.0/46.0, $P_T = 100.7$ Torr) by using continuous-scan mode at resolution 0.25 cm⁻¹· (b) IR spectrum of H₂CO. (c) IR spectrum of H₂O (d) IR spectrum of CHClO. (e) Processed spectrum with absorption of H₂CO, H₂O and CHClO subtracted; features in group A are indicated.

Fig. S4 Simulated rotational contours for v_5 , v_6 , v_8 and v_{10} modes of *gauche*-CMHP. Type *a*, type *b*, type *c*, and resultant rotational contours according to the weighting factors determined according to the projections of the predicted dipole derivatives onto axes *a*, *b* and *c* are shown.

Fig. S5 Simulated rotational contours for v_5 , v_6 , v_8 and v_{10} modes of *anti*-CMHP. Type *a*, type *b*, type *c*, and resultant rotational contours according to the weighting factors determined according to the projections of the predicted dipole derivatives onto axes *a*, *b* and *c* are shown.

Fig. S6 Simulated rotational contours for v_5 , v_6 , v_8 and v_{10} modes of *gauche*-MCP. Type *a*, type *b*, type *c*, and resultant rotational contours according to the weighting factors determined according to the projections of the predicted dipole derivatives onto axes *a*, *b* and *c* are shown.

Fig. S7 Spectral simulation of bands A₂ and A₂'. (a) Comparison of experimental spectrum (open circle) with a simulated spectrum (thick red solid line); contributions from the fundamental bands (v₈) of *gauche-*³⁵Cl-CMHP and *gauche-*³⁷Cl-CMHP and two series of hot bands are shown in thin lines (green for the fundamental band of *gauche-*³⁵Cl-CMHP and hot bands from v₁₄, orange for the fundamental band of *gauche-*³⁵Cl-CMHP and blue and purple for hot bands from v₁₅). (b) Contributions of fundamental and hot bands of *gauche-*³⁵Cl-CMHP. (c) Contributions from *gauche-*³⁷CMHP. Instrumental resolution is 0.25 cm⁻¹, which corresponds to spectral width 0.32 cm⁻¹ of simulation.

Fig. S8 Spectral simulation of the A₃ and A₄ bands. (a) Comparison of experimental spectrum (open circle) with a simulated spectrum (thick red solid line); contributions from the fundamental bands (v_5 and v_6) of *gauche*-³⁵Cl-CMHP and two series of hot bands are shown in thin lines (green for the fundamental band (v_5) and hot bands from v_{15} , blue for the fundamental band (v_6) and hot bands from v_{14}). (b) Contributions of fundamental and hot bands of v_6 . (c) Contributions of v_5 . Instrumental resolution is 0.25 cm⁻¹, which corresponds to spectral width 0.32 cm⁻¹ of simulation.

Fig. S9 Temporal profiles of *gauche*-CMHP, H₂O, and CHClO obtained on integration over regions 1030–1085, 1557–1560, and 1758–1810 cm⁻¹, respectively, of the difference spectra recorded on photolysis at 308 nm of a flowing mixture of CH₂I₂/HCl/N₂/O₂ (0.08/0.04/51.7/49.2, 101.0 Torr, 298 K). (a) Measured temporal profiles of CMHP (blue circles) and H₂O (black squares) with the fitted curves. (b) Comparison of the temporal profiles of H₂O (black squares) and CHClO (pink triangles; the data of CHClO have large uncertainties because of the severe interference from absorption of H₂CO.

Fig. S10 Comparison of plots of k^{I} vs. [HCl]₀ derived from model fit and single-exponential fit.

References

- 1. C. M. Western, "PGOPHER, a Program for Simulating Rotational Structure," http://pgopher.chm.bris.ac.uk/.
- 2. C. Cabezas and Y. Endo, Chem. Phys. Chem., 2017, 18, 1860–1863.
- W.-L. Ting, C.-H. Chang, Y.-F. Lee, H. Matsui, Y.-P. Lee and J. J.-M. Lin, J. Chem. Phys., 2014, 141, 104308.
- 4. S. Enami, J. Ueda, M. Goto, Y. Nakano, S. Aloisio, S. Hashimoto and M. Kawasaki, J. Phys. Chem. A, 2004, **108**, 6347–6350.
- 5. Y.-T. Su, H.-Y. Lin, R. Putikam, H. Matsui, M. C. Lin and Y.-P. Lee, Nat. Chem., 2014, 6, 477–483.
- 6. P.-L. Luo, Y. Endo and Y.-P. Lee, J. Phys. Chem. Lett., 2018, 9, 4391–4395.
- R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, Jr., R. G. Hynes, M. E. Jenkin, M. J. Rossi and J. Troe, Atmos. Chem. Phys., 2007, 7, 981–1191.
- T. J. Gravestock, M. A. Blitz, W. J. Bloss and D. E. Heard, ChemPhysChem, 2010, 11, 3928–3941.