Supporting Information

Ligands Enhanced Ac=Ac Triple Bond

Xiao-Cheng Xu,ª Xiao-Kun Zhao,ª Han-Shi Hu*

Table S1 EDA-NOCV results of H₃PAcAcPH₃ with four different sets of fragments with different charges and electronic states and the corresponding energy components (kcal/mol) at the PBE/TZ2P/TZP level.

Fragments	ΔE_{int}	ΔE_{pauli}	ΔE_{elstat}	$\Delta E_{ m orb}$
H ₃ PAc(⁴ A ₁)+AcPH ₃ (⁴ A ₁)	-49.35	113.83	-78.15	-85.04
H ₃ PAc ⁺ (³ A ₁)+AcPH ₃ ⁻ (³ A ₁)	-140.49	162.80	-167.72	-135.58
$H_3PAC^{2+}(^2A_1)+ACPH_3^{2-}(^2A_1)$	-458.48	265.20	-443.08	-280.60
H ₃ PAc ³⁺ (¹ A ₁)+AcPH ₃ ³⁻ (¹ A ₁)	-979.25	188.57	-712.25	-455.58

Table S2 EDA-NOCV energies of the frontier electrons between Ac_2 unit of other compounds at the PBE/TZ2P/TZP level.

	H ₃ AsAcAcAsH ₃	$H_3PAcAcPH_3$	OCAcAcCO	ONAcAcNO	H ₃ NAcAcNH ₃
$\Delta E_{ord}^{\sigma-s}$	-9.55(10.5%)	-8.88(10.4%)	-12.37(16.7%)	-13.15(18.7%)	-5.79(9.4%)
$\Delta E_{ord}^{\sigma - d}$	0	0	0	0	0
$\Delta E_{ord}^{\pi - d}$	-76.58(84.1%)	-72.24(84.9%)	-57.08(76.9%)	-56.53(80.2%)	-53.37(86.5%)
ΔE_{ord}^{rest}	-4.91(5.4%)	-3.92(4.7%)	-4.80(6.5%)	-0.81(1.1%)	-2.54(4.1%)
ΔE_{ord}	-91.04	-85.04	-74.25	-70.49	-61.70

Fig. S1 The results of the PIO analysis for the equivalent fragments at the B3LYP/cc-pVTZ level. The main PIOs with the orbitals' energies, populations and the contributions of each pair to the total interactions are listed on the left. The main principal interacting molecular orbitals (PIMOs) are listed on the right.

Compounds	Ac-Ac(Å)	ρ	V	н	$ abla^2 ho$
H ₃ AsAcAcAsH ₃	3.012	0.0298	-0.0253	-0.0028	0.0787
H ₃ PAcAcPH ₃	3.025	0.0300	-0.0270	-0.0025	0.0877
OCAcAcCO	3.082	0.0288	-0.0318	0.0003	0.1373
HAcAcH	3.255	0.0259	-0.0243	-0.0011	0.0879
ONAcAcNO	3.565	0.0161	-0.0116	-0.0005	0.0424
H ₃ NAcAcNH ₃	3.652	0.0130	-0.0058	-0.0018	0.0083
R ²		0.9851	0.8854		0.6797

Table S3 The electron densities (ρ), potential densities (V), energy densities (H) and the electron density Laplacian $\nabla^2 \rho$ of the Ac-Ac bond critical point of the six calculated compounds and the corresponding Ac-Ac bond lengths at the B3LYP/cc-pVTZ level.

Table S4 The energy and compositions of the frontier MOs of H₃PAcAcPH₃ and H₃NAcAcNH₃ based on the fragment analysis at the PBE/TZ2P/TZP level.

	E(eV)	Contribution (%)	MO	Energy (eV)	Fragments
H ₃ PAcAcPH ₃	$1\sigma_g^2 1\pi_u^4$				
1^{σ_g}	-0.1166	80.50	HOMO-1	-0.127257	Ac ₂
		16.10	LOMO+1	-0.07596	Ac ₂
		2.47	LOMO	-0.017773	PH ₃
$1^{\pi_{u}}$	-0.1031	86.97	номо	-0.091068	Ac ₂
		12.06	LOMO+2	-0.012729	PH ₃
$1^{\sigma_u^*}$	-0.0706	78.57	LOMO	-0.080585	Ac ₂
		9.57	LOMO+1	-0.016410	PH ₃
		7.94	LOMO+6	-0.015147	Ac ₂
		2.22	LOMO+12	0.046528	Ac ₂
		1.79	LOMO+5	0.087443	PH ₃
H ₃ NAcAcNH ₃	$1\sigma_{g}^{2}1\pi_{u}^{4}1\pi_{g}^{*2}$				
1^{σ_g}	-0.1429	90.53	HOMO-2	-0.165938	Ac ₂
		5.33	LOMO	-0.103737	Ac ₂
		2.58	номо	-0.222067	NH ₃
1^{π_u}	-0.1109	98.84	номо	-0.110883	Ac ₂
$1^{\sigma_u^*}$	-0.1004	95.31	HOMO-1	-0.115767	Ac ₂
		2.41	LOMO+1	-0.013788	NH ₃
		1.82	LOMO+14	0.020089	Ac ₂

Table S5 The change of electronic energy (ΔE) and Gibbs free energy (ΔG) for the reactions of Ac₂(g) + 2L(g) --> LACACL(g) (L = AsH₃, PH₃, CO, NO, NH₃) at the PBE/T22P/T2P level.

Compounds	ΔE	ΔG
H ₃ AsAcAcAsH ₃	-31.24	44.07
H ₃ PAcAcPH ₃	-55.75	22.46
OCAcAcCO	-177.53	-91.91

Fig. S2 The valence MO energy level diagrams of H₃PAcAcPH₃ and H₃NAcAcNH₃ and the corresponding Ac-Ac bond length at the PBE/TZ2P/TZP level.

The optimized geometry structure of all the compounds at the PBE/TZ2P/TZP level.

1, H₃AsAcAcAsPH₃

Ac	0.000000	0.000000	-1.509720
Ac	0.000000	0.000000	1.509720
н	1.076182	0.705416	-5.512527
н	0.072817	-1.284708	-5.512527
н	-1.148999	0.579293	-5.512527
н	0.072817	1.284708	5.512527
н	-1.148999	-0.579293	5.512527
н	1.076182	-0.705416	5.512527
As	0.000000	0.000000	4.668131
As	0.000000	0.000000	-4.668131

2, H₃PAcAcPH₃

Ac	0.000000	0.000000	-1.512331
Ac	0.000000	0.000000	1.512331
н	0.000000	1.214627	-5.342044
н	1.051898	-0.607313	-5.342044
н	-1.051898	-0.607313	-5.342044
н	0.000000	-1.214627	5.342044

Н	1.051898	0.607313	5.342044
н	-1.051898	0.607313	5.342044
Р	0.000000	0.000000	-4.567414
Р	0.000000	0.000000	4.567414

3, OCAcAcCO

Ac	0.000000	0.000000	-1.540763
Ac	0.000000	0.000000	1.540763
С	0.000000	0.000000	-4.086576
С	0.000000	0.000000	4.086576
0	0.000000	0.000000	-5.252379
0	0.000000	0.000000	5.252379

4, HAcAcH

Ac	0.000000	0.000000	-1.627502
н	0.000000	0.000000	-3.813998
Ac	0.000000	0.000000	1.627502
н	0.000000	0.000000	3.813998

5, ONAcAcNO

Ac	0.000000	0.000000	-1.780295
Ac	0.000000	0.000000	1.780295
0	0.000000	0.000000	-5.253317
0	0.000000	0.000000	5.253317
N	0.000000	0.000000	-4.034137
N	0.000000	0.000000	4.034137

6, H₃NAcAcNH₃

Ac	-0.002633	0.000732	-1.826428
Ac	-0.002292	0.000090	1.826430
н	0.382594	0.878641	-4.932135
н	0.571287	-0.769643	-4.931904
н	-0.950563	-0.108905	-4.934771
н	-0.854724	0.431394	4.933378
н	0.054172	-0.956573	4.932905
н	0.801703	0.524572	4.932542
N	0.000350	-0.000021	-4.554682
N	0.000221	-0.000223	4.554674