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1. Influence of cooling rate

We have simulated the glass transition with three constant cooling rates 110-4, 

110-5 and 110-6 [(ε/kB)/τ0] for polymer brushes, respectively. Fig. S1a shows the 

dependence of the brush height h on temperature T for the three cooling rates for 

flexible (k = 0) polymer brush. We find that, except the high cooling rate case (110-

4), there is no obvious difference for low cooling rate cases with 110-5 and 110-6. A 

slightly higher Tg in the high cooling rate case is consistent with theory. Our results 

show that Tg is roughly independent of the cooling rate when the cooling rate is 

smaller than 110-5 [(ε/kB)/τ0]. 

Fig. S1b shows the dependence of mean square radius of gyration <Rg
2> of 

polymer chains on temperature T for three cooling rates for flexible (k = 0) polymer 

brush. We also find that <Rg
2> is roughly the same for the cooling rates of 110-5 and 

110-6 [(ε/kB)/τ0].
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Fig. S1 Plot of the brush height h (a) and mean square radius of gyration <Rg
2> (b) of 

flexible (k = 0) polymer brushes versus temperature T for different cooling rates: 
dT/dt = 104, 105, and 106. The glass transition temperature Tg is indicated by dashed 
lines. For clarification, h of dT/dt = 104 is shifted by 2, and that of dT/dt = 105 is 
shifted by 1.

2. Persistence length

Fig. S2 presents the persistence length Lp for semi-flexible polymer in solution at 

temperature T = 1. We find that Lp increases linearly with the bending modulus k. 

The inset of Fig. S2 shows that Lp decreases with increasing T as Lp = Lp(1)/T.  
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Fig. S2 Plot of persistence length LP versus bending modulus k for the semi-flexible 
polymer in solution at T = 1. The inset shows the dependence of LP on T for k = 6. 
LP(1) denotes LP at T = 1.

3. Size effect

   We have examined the tilt of polymer chains in the semiflexible polymer brush 

with k = 6 in a larger system with Lx = Ly = 40. Fig. S3 shows the mean square end-

to-end distance <R2> and mean tilt angle <> for systems with Lx = Ly = 30 and 40. 

We find the size effect can be neglected.
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Fig. S3 Variation of (a) mean-square end-to-end distance <R2> and (b) mean tilt angle 
<> of polymer chains with N = 32 and kθ = 6 in the 303050 and 404050 
systems. 

4. lateral position fluctuation

    Fig. S4 presents the lateral position fluctuation 2
|| for the fully flexible (kθ = 0) 

and semiflexible (kθ = 6) polymer brushes at temperature slightly higher than Tg. We 

can see the free-surface effect with large 2
|| for large segment indexes and the 
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substrate effect with small 2
|| for small segment indexes.

0 5 10 15 20 25 30 35
0.0

0.5

1.0

1.5

2.0

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6k = 0   
T = 0.15 

 2 ||

Index of segment

(a) (b) k = 6   
T = 0.585 

 

2 ||

Index of segment

Fig. S4 Profile of the lateral position fluctuation 2
|| for the fully flexible (kθ = 0) and 

semiflexible (kθ = 6) polymer brushes. Temperature is a little higher than Tg. Polymer 
length N = 32.

5. Autocorrelation function of bond vectors

The autocorrelation function of a bond vector is defined as

                          (1)
𝜌𝑏(𝑡)=

<→
𝑏
(𝑡) ⋅ →

𝑏
(0) >

< 𝑏2 >

with  and  the bond vector at time t = 0 and t, respectively. The bracket 𝑏⃗(0) 𝑏⃗(𝑡)

denotes an average over chains and independent samples. 

Fig. S5(a) presents the evolution of b(t) for the 15th and 31st bonds in the polymer 

chains for flexible (kθ = 0) and semiflexible (kθ = 6) polymer brushes. Polymer length 

is N = 32. The 15th and 31st bonds correspond to the middle and tail bonds, 

respectively. We find b(t) decreases with time. However, it does not decay to 0 even 

at long time, except that close to the free end of the flexible polymer chains. For the 

semiflexible polymer brush with kθ = 6, the decay of b(t) is very limited due to the 

chain rigidity. Therefore, we are not able to estimate the relaxation time from the 1/e 

value. Moreover, we also find that the decrease of b(t) does not obey a single 

exponent decay.1,2 On the contrary, the exponent is of time dependence as shown in 

Fig. S5(b). Therefore, we are not able to estimate the relaxation time from the 

exponent decay of b(t), and in consequence we are not able to calculate the local 

glass transition temperature in the polymer brush. Our results indicate that the 
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dynamics of polymer brushes is different from that of polymer films (floating on 

substrate). It was pointed out that the local glass transition temperature could be 

obtained based on the autocorrelation function for polymer films.3    
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Fig. S5 Linear plot (a) and semi-logarithm plot (b) for the evolution of the 
autocorrelation function b(t) of the 15th and 31st bond in flexible (kθ = 0) and 
semiflexible (kθ = 6) polymer brushes. Polymer length N = 32, temperature T = 0.8. 

6. Mean square displacement of segments

The lateral mean square displacement (MSD) of a segment is defined as

                   (2)< ∆𝑟2 > ||(𝑡)=< [𝑥(𝑡) ‒ 𝑥(0)]
2 + [𝑦(𝑡) ‒ 𝑦(0)]2 >

with x(t), y(t) the lateral position of the segment at time t. The lateral MSD is 

averaged over all segments of the same index and over all independent samples. The 

lateral MSDs are calculated for segment indexes from 2 to N. 

Fig. S6 presents the evolution of the lateral MSD of the 16th and 32nd segments 

with time in the flexible (kθ = 0) and semiflexible (kθ = 6) polymer brushes at T = 0.8. 

Different from that in polymer melts or in polymer films, the MSD of individual 

segments in polymer brushes increases with time and finally saturates at a plateau 

value,1 we thus can’t obtain the diffusion coefficient as in bulk or in films. Compared 

with the flexible polymer brush, the semiflexible one needs much longer time to reach 
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the plateau. And the lower the temperature is, the longer time is needed to reach the 

plateau value. Therefore, it is difficult to obtain the final plateau value without 

running too long time at low temperature especially close to Tg. Some groups 

arbitrarily defined a relaxation time , at which the lateral MSD has reached 2/3 or 3/4 

of its final saturation value,1 or a segment’ distance,4 to characterize the dynamics of 

polymer brushes. 
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Fig. S6 Evolution of the lateral MSD, <r2>||, of the 16th and 32nd segments with 
time in flexible (kθ = 0) and semiflexible (kθ = 6) polymer brushes at T = 0.8.

We have recorded the lateral MSD of individual segments at different simulation 

times and temperatures. Fig. S7 present the dependence of the lateral MSD of the tail 

segment (i = 32) on the temperature T for the fully flexible (kθ = 0) and semiflexible 

(kθ = 6) polymer brushes at t = 50000 (in unit of 0). We find the lateral MSD roughly 

tends to 0 at low temperature. As shown in Fig. S7, the local glass transition 

temperature, Tg,local, is estimated as the temperature at which the two straight lines 

representing the movable and frozen regions, respectively, intersect with each other. 
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Fig. S7 Variation of the lateral MSD, <r2>||, of the tail segment (i = 32) with 
temperature T for the fully flexible (kθ = 0) and semiflexible (kθ = 6) polymer brushes 
after running for 50000 at each temperature. 

We have estimated Tg,local from the lateral MSD at different simulation times. We 

find that Tg,local is dependent on the simulation time as shown in Fig. S8, especially for 

the fully flexible polymer brush. As the simulation time increases, Tg,local tends to the 

pseudo-thermodynamical glass transition temperature, Tg, determined from the 

temperature-dependent brush height. The result indicates that a longer time is better to 

estimate Tg,local. However, for the semiflexible (kθ = 6) polymer brush, the value of 

Tg,local is of less time dependence. 

The decrease of Tg,local with segment index shown in Fig. S8 is resulted from the 

confinement effect of substrate, similar to that determined form the lateral fluctuation 

of segments.
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Fig. S8 Local glass transition temperature (Tg,local) of individual segments in the fully 
flexible (kθ = 0) and semiflexible (kθ = 6) polymer brush estimated based on the 
variation of lateral MSD at different times in annealing process. The dash lines 
indicate the corresponding pseudo-thermodynamical glass transition temperature Tg 
estimated from the temperature-dependent brush height.

7. Random grafted polymer brushes

We have also simulated the variation of brush height with temperature and Tg,local 

of individual segments for fully flexible (k = 0) and semiflexible (k = 6) polymer 

brushes which are randomly grafted (but without overlap) on the substrate. The results 

are presented in Fig. S9. It is found that Tg and Tg,local of randomly grafted polymer 

brushes are roughly the same as that of regularly grafted ones.
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Fig. S9 Comparison of the temperature dependence of the brush height h (a) and the 
local glass transition temperature Tg,local of individual segments determined from the 
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temperature-dependent lateral position fluctuation 2
|| (b) for the flexible (k = 0) and 

semiflexible (k = 6) polymer brushes grafted randomly and regularly on the substrate, 
respectively. The dash line in (b) presents the corresponding value of Tg.
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