Effect of the Cu dopants on the Electron Transfer to O_2 and the Connection with the Photocatalysis over Nano-Ti O_2

Baoshun Liu, ^{1*}Jiangyan Wang, ¹Ivan P. Parkin, ²Xiujian Zhao¹

¹ State Key Laboratory of Silicate Materials for Architectures, Wuhan University of

Technology, Wuhan City, Hubei province 430070, P. R. China

² Department of Chemistry, Materials Chemistry Centre, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.

Fig. S1 Experimental setup for photoconductance and transient photoconductance

measurement

Fig. S2 XRD patterns of the undoped and Cu-doped TiO₂ samples.

Fig. S3 Raman scattering patterns of the undoped and Cu-doped TiO_2 samples, and the magnification of E_g peak at 145 cm⁻¹ is shown in right-top corner.

Fig. S4 O1s core-level XPS spectra of the pure and 0.2 Cu-TiO $_2$

Fig. S5 Ti2p core-level XPS spectra of the pure and $0.2Cu-TiO_2$

Fig. S6 F1s high-resolution core-level XPS spectra of the pure and 0.2Cu-TiO₂

Fig. S7 SEM image of the undoped TiO_2 sample

Fig. S8 SEM image of the Cu-doped TiO_2 sample

Fig. S9 Vacuum photoconductances of the undoped TiO_2 measured at different temperatures and at 1.0 Pa O₂ partial pressure under 20 mW/cm² 365 nm UV light illumination.

Fig. S10 Vacuum photoconductances of 0.2Cu-TiO₂ measured at different temperatures and

at 1.0 Pa O_2 partial pressure under 20 mW/cm² 365 nm UV light illumination

Fig. S11 Relation between the maxima of photoconductances and temperatures for the undoped TiO_2 and 0.2 Cu-TiO₂.

Fig.S12 Dependences of $\ln (\sigma(t)/\sigma(0))$ on time for the undoped sample at different

temperatures

Fig. S13 Dependences of ln ($\sigma(t)/\sigma(0)$) on time for the 0.2 Cu-TiO₂ at different temperatures;

Fig. S14. CO_2 evolution during the acetone photocatalytic oxidations over the pure TiO₂ at different temperatures under 20 mW/cm² 365 nm UV light illumination.

Fig. S15 CO_2 evolutions during the acetone photocatalytic oxidations over the undoped TiO2 at different temperatures under 20 mW/cm² 365 nm UV light illumination

Fig. S16 DOS of the pure bulk TiO_2

Fig. S17 DOS of the Cu doped bulk $\rm TiO_2$

Fig. S18 DOS of the pure TiO_2 (101) surface

Fig. S19 DOS of and the Cu-doped TiO_2 (101) surface