- 1 Supporting Information for "Mechanism Exploration of the Enhancement
- 2 of Thermal Energy Storage in Molten Salt nanofluid
- 3 "
- 4 Zhao Li¹, Liu Cui¹*, Baorang Li¹, Xiaoze Du²*
- 5 1 Key Laboratory of Power Station Energy Transfer Conversion and System (North
- 6 China Electric Power University), Ministry of Education, Beijing 102206, China.
- 7 2 School of Energy and Power Engineering, Lanzhou University of Technology,
- 8 Lanzhou 730050, China.
- 9 *To whom correspondence should be addressed.
- 10 E-mail: liucui@ncepu.edu.cn (Liu Cui); duxz@ncepu.edu.cn (Xiaoze Du)

The Born-Mayer-Huggins (BMH) potential with Coulomb potential, shown in Eq. (S1), 11 was used to describe the interaction between two no-bonded atoms of the carbonate 12 base fluid¹. Meanwhile, the bonded interactions with bond stretching, bond bending 13 and torsion in CO_3^{2-} were calculated as Eq. (S2)². Besides, the Buckingham potential 14 with Coulombic interaction, shown in Eq. $(S3)^3$, was used to describe the interaction 15 between two non-bond atoms in the SiO₂ nanoparticle. The Lennard-Jones (L-J) with 16 Coulombic interaction, shown in Eq. (S4), was applied as force field for the Al₂O₃ 17 nanoparticle. The bonded interactions with bond stretching, bond bending and torsion 18 is shown in Eq. $(S2)^4$. For both two nanofluid, the interaction between nanoparticle and 19 20 base fluid was described by L-J potential energy with Coulombic interaction, shown in Eq. (S4). Moreover, the Particle-particle-particle-mesh (pppm) with an accuracy of 10⁻⁴ 21 was used for coulombic interactions in the MD simulation of this paper⁵. The 22 23 parameters used in the potential mentioned above are all given in the Table S1.

24
$$E_{ij}(r) = \frac{z_i z_j e^2}{r_{ij}} + b(1 + \frac{z_i}{n_i} + \frac{z_j}{n_j}) \exp[\alpha(\sigma_i + \sigma_j - r_{ij})]$$
(S1)

25 where z_i and z_j are the ion valences of ion i and j, *e* is the electric charge unit, n_i and n_j 26 are the number of electrons in the outer atomic shell, σ_i and σ_j , can be interpreted as the 27 ionic radius and r_{ij} is the distance between atoms i and j. Moreover, the constants 28 b=4.865 kcal/mol and σ =3.45 Å⁻¹ determine the weight and steepness of the BMH 29 interaction¹, respectively.

30
$$E_{\text{bond}} = K_{\text{s}}(r - r_0)^2 + K_{\text{b}}(\theta - \theta_0) + K_{\text{t}}(1 + d \cdot \cos(n\phi))$$
 (S2)

31 where K_s, K_b and K_t are the stretching constant, bending constant and torsional constant,

32 respectively. Besides, r and θ are the bond length and bond angle, r_0 and θ_0 are the bond

33 length and angle at a balanced condition.

34
$$E_{ij}(r) = A_{ij}e^{-\frac{r_{ij}}{\rho_{ij}}} - \frac{C_{ij}}{r_{ij}^{6}} + \frac{q_iq_j}{r_{ij}}$$
(S3)

35 where E_{ij} is the interaction energy, r_{ij} is the distance between site *i* and *j*. q_i and q_j are 36 the charges of the atom at site i and j, respectively.

37
$$E_{ij}(r) = \frac{q_i q_j}{r_{ij}} + 4\xi [(\frac{\sigma_{ij}}{r_{ij}})^{12} - (\frac{\sigma_{ij}}{r_{ij}})^6]$$
(S4)

38 where r_{ij} is the distance between atom *i* and *j*, and ξ_{ij} is the potential well depth while

39 σ_{ij} is the distance between atom *i* and *j* where the inter-particle potential is zero.

40

Table S1 (a). Potential parameters for the carbonate base fluid in this study^{2, 6}

Param	Parameters		Carbonate salt base fluid					
		Interaction	C-C	0-0	K-K	Li-Li		
DMIL #	BMH potential		1.54	-1.18	1.00	1.00		
вмн р			2.46	7.18	8.00	2.00		
			1.10	1.33	1.39	0.77		
	Stretching	K _s (Kcal/mol/Å ²)		4612				
		r _o (Å)		1.29				
Dandad	Bending	K _b (Kcal/mol)		107.435				
Bonded		θ_0 (°)		120				
Interactions	Torsion	K _t (Kcal/mol)		1.139				
		d		-1				
		n		0				
1								
2 Tab	ole S1 (b). Poten	tial parameters for t	he SiO ₂	nanoparticle	in this study	3		
Atom	$q_i(e)$	A _{ii} (Kcal·1	nol ⁻¹)	$\rho_{ii}(\text{\AA})$ $C_{ii}(\text{Kcal·mol}^{-1})$		·mol ⁻¹ .Å ⁶)		
O (In SiO ₂)	-0.955209	15170.70		0.386	617.24			
Si	1.910418	72460.64		0.351	14415.2	9		
3								

⁴⁴

Table S1 (c). Potential parameters for the Al₂O₃ nanoparticle in this study⁴

Parameters	Al ₂ O ₃ nanoparticle					
L-J potential	Interaction	ction Al-Al		0-0		
	ξ (Kcal/mol)	0.040		0.228		
	σ (Å)	4.053		2.860		
	<i>q</i> (e)	1.5		-1.0		
Bonded interactions	Stretching	K_s (Kcal/mol/Å ²)		392.8		
		r _o (Å)		1.775		
	Bending	K _b (Kcal/mol)	100.3	K _b (Kcal/mol)	31.1	
		θ_0 (°)	109.5	θ_0 (°)	149.8	
	Torsion	K _t (Kcal/mol)	26.270			
		d	-1			
		n		2		

45

46 Table S1 (d) L-J potential parameters for the interaction between nanoparticle and base fluid^{4, 6, 7}

Materials	Interaction	ξ (Kcal/mol)	σ (Å)	<i>q</i> (e)
SiO ₂	Si-Si	0.040	4.053	1.910418
	O-O(in SiO ₂)	0.228	2.860	-0.955209
Al2O3	Al-Al	0.040	4.053	1.5
	O-O(in Al ₂ O ₃)	0.228	2.860	-1.0
	C-C	0.148	3.617	1.54
Carbonate base	O-O(in CO ₃ ²⁻)	0.228	2.88	-1.18
fluid	K-K	5.451	3.197	1
	Li-Li	4.735	2.839	1

47 References

- A. Ottochian, C. Ricca, F. Labat and C. Adamo, *Journal of molecular modeling*,
 2016, 22, 61.
- 50 2. B. Jo and D. Banerjee, 2011.
- 51 3. G. Qiao, M. Lasfargues, A. Alexiadis and Y. Ding, *Applied Thermal* 52 *Engineering*, 2017, **111**, 1517-1522.
- 53 4. Y. Hu, Y. He, Z. Zhang and D. Wen, *Energy Conversion and Management*,
 54 2017, 142, 366-373.
- 55 5. G. Qiao, A. Alexiadis and Y. Ding, *Powder technology*, 2017, **314**, 660-664.
- 56 6. F. Yuan, M.-J. Li, Y. Qiu, Z. Ma and M.-J. Li, *Appl. Energy*, 2019, 250, 148157 1490.
- 58 7. Y. Hu, Y. He, Z. Zhang and D. Wen, *Solar Energy Materials and Solar Cells*,
 59 2019, **192**, 94-102.
- 60