Supplementary Information

Atomic adsorption on monolayer Cu₂Se: a first-principles study

Yizhou You, ^{1,2} Huimin Hu,^{1,2} and Jin-Ho Choi^{1,2,*}

¹College of Energy, Soochow Institute for Energy and Materials Innovations,

Soochow University, Suzhou 215006, China

²Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China

Available content:

- Computational Details

- Figure S1. The orbital-decomposed DOS of ζ -Cu₂Se decorated with adatoms within PBE-D3+U scheme. (a) – (e): H, B, C, N and O.

- Figure S2. The orbital-decomposed DOS of ζ -Cu₂Se decorated with adatoms within PBE-D3+U scheme. (a) – (e): Li, Na, K, Ca and Al.

- Figure S3. The orbital-decomposed DOS of ζ -Cu₂Se decorated with adatoms within PBE-D3+U scheme. (a) – (e): Fe, Co, Ni, Cu and Zn.

- Figure S4. The orbital-decomposed DOS of ζ -Cu₂Se decorated with adatoms within PBE-D3+U scheme. (a) – (d): Pd, Ag, Pt, and Au.

- Figure S5. Band structures of Pt/Cu₂Se using PBE-D3+U method (a) without and (b) with spin orbit coupling effect.

- Figure S6. The orbital-decomposed DOS of λ -Cu₂Se decorated with adatoms. (a) – (d): O, Li, Fe, and Au.

Computational Details

Formation energy calculation:

The formation energy (ΔH) of Cu₂Se per formula unit (f.u.) is defined as:

$$\Delta H = [E_{tot}(Cu_2Se) - n_{Cu}E_{tot}(Cu) - n_{Se}E_{tot}(Se)]/n_{Cu2Se}$$

where $E_{tot}(Cu_2Se)$ is the total energy of ζ -Cu₂Se or λ -Cu₂Se, $E_{tot}(Cu)$ and $E_{tot}(Se)$; n_{Cu} , n_{Se} and n_{Cu2Se} represent the number of Cu, Se, Cu₂Se units, respectively; $E_{tot}(Cu)$ and $E_{tot}(Se)$ are the total energy of Cu and Se atom in its bulk form, which is face-centered cubic Cu and $P3_121$ Se, respectively.

Gibbs free energy calculation:

The Gibbs free energy (ΔG) is calculated by:

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S$$

where ΔE , ΔZPE and ΔS represent the hydrogen adsorption energy, zero-point energy and entropy, respectively. Particularly, the value of $T\Delta S$ for a hydrogen atom is 0.20 eV at 298 K.¹

Figure S1. The fully orbital-decomposed DOS of ζ -Cu₂Se decorated with adatoms within the PBE-D3+U scheme: (a) H, (b) B, (c) C, (d) N, and (e) O.

Figure S2. The fully orbital-decomposed DOS of ζ -Cu₂Se decorated with adatoms within the PBE-D3+U scheme: (a) Li, (b) Na, (c) K, (d) Al, and (e) Ca.

Figure S3. The fully orbital-decomposed DOS of ζ -Cu₂Se decorated with adatoms within the PBE-D3+U scheme: (a) Fe, (b) Co, (c) Ni, (d) Cu, and (e) Zn.

Figure S4. The fully orbital-decomposed DOS of ζ -Cu₂Se decorated with adatoms within the PBE-D3+U scheme: (a) Pd, (b) Ag, (c) Pt, and (d) Au.

Figure S5. Band structures of Pt/Cu₂Se using PBE-D3+U method (a) without and (b) with spin-orbit coupling effect.

Figure S6. The fully orbital-decomposed DOS of λ -Cu₂Se decorated with adatoms within the PBE-D3+U scheme: (a) O, (b) Li, (c) Fe, and (d) Au.

Reference

 Y. Ouyang, C. Ling, Q. Chen, Z. Wang, L. Shi and J. Wang, Activating Inert Basal Planes of MoS₂ for Hydrogen Evolution Reaction through the Formation of Different Intrinsic Defects, *Chem. Mater.*, 2016, 28, 4390–4396.