Characterisation of Two Photon Excited Fragment Spectroscopy (TPEFS) for HNO3 detection in gas-phase kinetic experiments

Damien Amedro,^a Arne J.C Bunkan,^a Terry J. Dillon^a and John. N. Crowley^{a*}

- *a. Division of Atmospheric Chemistry, Max Planck-Institut für Chemie, 55128 Mainz, Germany*
- * *Correspondence to: john.crowley@mpic.de*

Supplementary Information

Figure S1. NO absorption spectrum (black dots) at 298 K and 19 Torr N₂ bath-gas ([NO] = 3.1×10^{16} molecule cm⁻³). The spectral resolution (δλ) was 0.16 nm. The grey line indicates the position of the ArF laser pulse at [1](#page-7-0)93 nm. The black, blue, red and purple absorption lines were assigned using LIFBASE.¹

Figure S2. NO fluorescence signal as a function of 193 nm laser energy. The NO fluorescence signal was recorded with a PMT through a (310 \pm 5) nm interference filter. Conditions: Room temperature, 60 Torr N_2 , $[NO] = 4.1 \times 10^{15}$ molecule cm⁻³.

- (a) $NO₂$ excitation, $N₂$ and He bath-gases. (b) NO excitation, $N₂$ and He bath-gases.
-
- (c) NO₂ excitation, He and He/O₂ bath-gases (d) NO excitation, He and He/O₂ bath-gases.
	-
-
- (e) NO₂ excitation, N₂ and N₂/O₂ bath-gases (f) NO excitation, N₂ and N₂/O₂ bath-gases.

Figure S4. NO fluorescence signal recorded with a PMT through a 310 nm interference filter as a function of O_2 concentration. The black line is a fit according to the equation below, from which we derive a quenching rate coefficient of $(1.5 \pm 0.1) \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹ for the NO(A) state.

$$
\Gamma = \frac{k f(NO(A))}{k f(NO(A)) + k q_{02}(NO(A)) \times [0_2] + k q_{NO}(NO(A)) \times [NO] + k q_{N2}(NO(A)) \times [NO]}
$$

where k_f is the natural lifetime (4.9 \times 10⁶ s⁻¹) of the A(v'=0) state of NO,^{[2](#page-7-1)} k_q (N₂) = 4.6 \times 10⁻¹⁴ cm³ molecule⁻¹ s⁻¹, ^{[3](#page-7-2)} $k_q(NO)$ = 2.7 \times 10⁻¹⁰ cm³ molecule⁻¹ s⁻¹,³ and $k_q(O_2)$ are the quenching rate constants (in cm³ molecule⁻¹ s⁻¹) of the first electronic state of NO by N_2 , NO and O₂.

Figure S5. Integrated TPEFS signal as a function of $[H_2O_2]$. The experimental conditions were 50 Torr N₂ and ~298 K. Error bars are overall uncertainty at 2σ.

Figure S6. Experiment to detect HO_2 using TPEFS. At time $t = 0$, H_2O_2 was photolyzed using a 248 nm laser to form OH and thus HO₂. The red line corresponds to a simulation of the expected reduction in signal caused by depletion H_2O_2 . The difference between the black and red lines at t > 0 was used to set an upper limit to the signal from HO₂. Conditions: $p = 60$ Torr N₂, [H₂O₂] = 2.4 × 10¹⁵ molecule cm⁻³, laserfluence $(248 \text{ nm}) = 6.8 \, 10^{16} \text{ photon cm}^{-2}$.

Parameterisation of the rate coefficient (k_2) **for reaction between OH and NO₂**

$$
k_2(P,T) = \frac{\left(x_{N2}k_0^{N2}\left(\frac{T}{300}\right)^{-m} + x_{02}k_0^{02}\left(\frac{T}{300}\right)^{-q} + x_{N20}k_0^{N2}\left(\frac{T}{300}\right)^{-0}\right)Mk_{\infty}\left(\frac{T}{300}\right)^{-n}}{\left(x_{N2}k_0^{N2}\left(\frac{T}{300}\right)^{-m} + x_{02}k_0^{02}\left(\frac{T}{300}\right)^{-q} + x_{N20}k_0^{N2}\left(\frac{T}{300}\right)^{-0}\right)M + k_{\infty}\left(\frac{T}{300}\right)^{-n}F}
$$

where

$$
\log F = \frac{\log F_c}{1 + \left[\log \left(\frac{\left(x_{\mathsf{N2}} k_0^{\mathsf{N2}} \left(\frac{T}{300} \right)^{-m} + x_{\mathsf{O2}} k_0^{\mathsf{O2}} \left(\frac{T}{300} \right)^{-q} + x_{\mathsf{H2O}} k_0^{\mathsf{H2O}} \left(\frac{T}{300} \right)^{-0} \right) M}{k_\infty \left(\frac{T}{300} \right)^{-n}} \right) / [0.75 - 1.27 \log Fc] \right]^2}
$$

The parameters used to generate the solid lines in Figure 10 were: $k_0(N_2) = 2.6 \times 10^{-30}$ cm⁶ molecule⁻² s⁻¹, k_0 (O₂) = 2.0 × 10⁻³⁰ cm⁶ molecule⁻² s⁻¹, k_0 (H₂O) = 2.6 × 10⁻³⁰ cm⁶ molecule⁻² s⁻¹, k_{∞} = 6.3 \times 10⁻¹¹ cm³ molecule⁻¹ s⁻1, F_c = 0.39 and the *T*-dependent parameters *m* = 3.6, *n* = 0, *o* = 3.4, *q* $= 3.6$ as reported by Amedro et al.^{4,5}

References.

- 1. J. Luque and D. R. Crosley, *LIFBASE (version 1.5[\) http://www.sri.com/cem/lifbase](http://www.sri.com/cem/lifbase)*, 1999.
- 2. J. Luque and D. R. Crosley, *J. Chem. Phys.*, 2000, **112**, 9411.
- 3. T. B. Settersten, B. D. Patterson and C. D. Carter, *J. Chem. Phys.*, 2009, **130**, 204302.
- 4. D. Amedro, M. Berasategui, A. J. C. Bunkan, A. Pozzer, J. Lelieveld and J. N. Crowley, *Atmos. Chem. Phys.*, 2020, **20**, 3091.
- 5. D. Amedro, A. J. C. Bunkan, M. Berasategui and J. N. Crowley, *Atmos. Chem. Phys.*, 2019, **19**, 10643.