Characterisation of Two Photon Excited Fragment Spectroscopy (TPEFS) for HNO₃ detection in gas-phase kinetic experiments

Damien Amedro,^a Arne J.C Bunkan,^a Terry J. Dillon^a and John. N. Crowley^a*

- *a.* Division of Atmospheric Chemistry, Max Planck-Institut für Chemie, 55128 Mainz, Germany
- * Correspondence to: john.crowley@mpic.de

Supplementary Information

Figure S1. NO absorption spectrum (black dots) at 298 K and 19 Torr N₂ bath-gas ([NO] = 3.1×10^{16} molecule cm⁻³). The spectral resolution ($\delta\lambda$) was 0.16 nm. The grey line indicates the position of the ArF laser pulse at 193 nm. The black, blue, red and purple absorption lines were assigned using LIFBASE.¹

Figure S2. NO fluorescence signal as a function of 193 nm laser energy. The NO fluorescence signal was recorded with a PMT through a (310 \pm 5) nm interference filter. Conditions: Room temperature, 60 Torr N₂, [NO] = 4.1 × 10¹⁵ molecule cm⁻³.

- (a) NO_2 excitation, N_2 and He bath-gases.
- (b) NO excitation, N₂ and He bath-gases.
- (c) NO_2 excitation, He and He/O₂ bath-gases
- (d) NO excitation, He and He/O_2 bath-gases.
- (e) NO₂ excitation, N_2 and N_2/O_2 bath-gases
- (f) NO excitation, N_2 and N_2/O_2 bath-gases.

Figure S4. NO fluorescence signal recorded with a PMT through a 310 nm interference filter as a function of O_2 concentration. The black line is a fit according to the equation below, from which we derive a quenching rate coefficient of $(1.5 \pm 0.1) \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹ for the NO(A) state.

$$\Gamma = \frac{kf(\text{NO}(A))}{kf(\text{NO}(A)) + kq_{\text{O}_2}(\text{NO}(A)) \times [\text{O}_2] + kq_{\text{NO}}(\text{NO}(A)) \times [\text{NO}] + kq_{\text{N}_2}(\text{NO}(A)) \times [\text{NO}]}$$

where k_f is the natural lifetime (4.9 × 10⁶ s⁻¹) of the A(v'=0) state of NO,² k_q (N₂) = 4.6 × 10⁻¹⁴ cm³ molecule⁻¹ s⁻¹, ³ k_q (NO) = 2.7 × 10⁻¹⁰ cm³ molecule⁻¹ s⁻¹, ³ and k_q (O₂) are the quenching rate constants (in cm³ molecule⁻¹ s⁻¹) of the first electronic state of NO by N₂, NO and O₂.

Figure S5. Integrated TPEFS signal as a function of $[H_2O_2]$. The experimental conditions were 50 Torr N_2 and ~298 K. Error bars are overall uncertainty at 2σ .

Figure S6. Experiment to detect HO₂ using TPEFS. At time t = 0, H₂O₂ was photolyzed using a 248 nm laser to form OH and thus HO₂. The red line corresponds to a simulation of the expected reduction in signal caused by depletion H₂O₂. The difference between the black and red lines at t > 0 was used to set an upper limit to the signal from HO₂. Conditions: p = 60 Torr N₂, [H₂O₂] = 2.4×10^{15} molecule cm⁻³, laser-fluence (248 nm) = 6.8×10^{16} photon cm⁻².

Parameterisation of the rate coefficient (k_2) for reaction between OH and NO₂

$$k_{2}(P,T) = \frac{\left(x_{N2}k_{0}^{N2}\left(\frac{T}{300}\right)^{-m} + x_{02}k_{0}^{O2}\left(\frac{T}{300}\right)^{-q} + x_{H2O}k_{0}^{H2O}\left(\frac{T}{300}\right)^{-o}\right)Mk_{\infty}\left(\frac{T}{300}\right)^{-n}}{\left(x_{N2}k_{0}^{N2}\left(\frac{T}{300}\right)^{-m} + x_{02}k_{0}^{O2}\left(\frac{T}{300}\right)^{-q} + x_{H2O}k_{0}^{H2O}\left(\frac{T}{300}\right)^{-o}\right)M + k_{\infty}\left(\frac{T}{300}\right)^{-n}F}$$

where

$$\log F = \frac{\log F_c}{1 + \left[\log \left(\frac{\left(x_{N2} k_0^{N2} \left(\frac{T}{300} \right)^{-m} + x_{02} k_0^{02} \left(\frac{T}{300} \right)^{-q} + x_{H20} k_0^{H20} \left(\frac{T}{300} \right)^{-0} \right) M}{k_{\infty} \left(\frac{T}{300} \right)^{-n}} \right) / [0.75 - 1.27 \log Fc] \right]^2}$$

The parameters used to generate the solid lines in Figure 10 were: $k_0(N_2) = 2.6 \times 10^{-30} \text{ cm}^6$ molecule⁻² s⁻¹, $k_0(O_2) = 2.0 \times 10^{-30} \text{ cm}^6$ molecule⁻² s⁻¹, $k_0(H_2O) = 2.6 \times 10^{-30} \text{ cm}^6$ molecule⁻² s⁻¹, $k_{\infty} = 6.3 \times 10^{-11} \text{ cm}^3$ molecule⁻¹ s⁻¹, $F_c = 0.39$ and the *T*-dependent parameters m = 3.6, n = 0, o = 3.4, q = 3.6 as reported by Amedro et al.^{4, 5}

References.

- 1. J. Luque and D. R. Crosley, *LIFBASE (version 1.5)* <u>http://www.sri.com/cem/lifbase</u>, 1999.
- 2. J. Luque and D. R. Crosley, J. Chem. Phys., 2000, **112**, 9411.
- 3. T. B. Settersten, B. D. Patterson and C. D. Carter, J. Chem. Phys., 2009, 130, 204302.
- 4. D. Amedro, M. Berasategui, A. J. C. Bunkan, A. Pozzer, J. Lelieveld and J. N. Crowley, *Atmos. Chem. Phys.*, 2020, **20**, 3091.
- 5. D. Amedro, A. J. C. Bunkan, M. Berasategui and J. N. Crowley, *Atmos. Chem. Phys.*, 2019, **19**, 10643.