Supplementary Information

Short-range structure, the role of bismuth and property-structure correlations in bismuth borate glasses

C.P.E. Varsamis^{1*}, N. Makris², C. Valvi³ and E.I. Kamitsos^{2*}

¹Applied Physics Laboratory, Faculty of Engineering, University of West Attica, 250 Thivon, 112 41 Egaleo, Attica, Greece

 ²Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Ave., 116 35 Athens, Greece
 ³Electronic Devices and Materials Laboratory, Department of Electrical and Electronics Engineering, University of West Attica, 250 Thivon, 112 41 Egaleo, Attica, Greece

*Corresponding authors: cvars@uniwa.gr (C.P.E. Varsamis); eikam@eie.gr (E.I. Kamitsos)

S1. Application of infrared spectroscopy for the calculation of the molar fractions of the borate species present in glasses x=0.50 and 0.60 of the system $xBi_2O_3-(1-x)B_2O_3$.

Based on the discussion in Sections 3.1 and 4.1, the borate speciation in glasses x=0.50 and 0.60 involves pyro-borate $BO_2^{2^2}$ and ortho-borate $BO_3^{3^2}$ trigonal units and tetrahedral units in the form of either meta-borate BO_4^{-1} or ortho-borate $BO_2O_2^{3^2}$ species. For the evaluation of the corresponding molar fractions we consider the mass balance equation:

$$X_{4m} + X_{4o} + X_1 + X_0 = 1 \tag{S.1}$$

 $X_{4m}X_{4o}$ denote the molar fraction of the BØ₄⁻ and BØ₂O₂³⁻ tetrahedral units, and X_1, X_0 are the molar fractions of BØO₂²⁻ and BO₃³⁻ triangular units, respectively. Besides Eq. (S1), we apply a pair of equations similar to Eqs. (15) in the manuscript for the two component bands in Table 2 with frequency v₂ and v₃ in the ranges 1290-1315 cm⁻¹ and 1185-1199 cm⁻¹, respectively:

$$A_{2} = (X_{1} + X_{0}) a_{B - 0}^{-}$$

$$A_{3} = X_{1} a_{B - 0} + 0.14 X_{0} a_{B - 0}^{-}$$
(S.2b) (S.2a)

where A_2 and A_3 are the normalized integrated intensities of the bands with frequency v_2 and v_3 , respectively. Using the previously calculated values for $a_{B-0}^{-} = 0.785 \text{ cm}^{-2}$ and $a_{B-0} = 0.4624 \text{ cm}^{-2}$, the molar fractions of pyroborate species B O_2^{2-} , X_1 , and orthoborate species B O_3^{3-} , X_0 , can be evaluated directly from Eqs. (S.2a) and (S.2b) as follows:

$$X_{0} = \frac{A_{3} - A_{2} \frac{a_{B-\emptyset}}{a_{B-0}}}{(0.14 a_{B-0}) - a_{B-\emptyset}}$$
(S.3)

$$X_{1} = \frac{A_{2}}{a_{B-0}^{-}} - \frac{A_{3} - A_{2} \frac{a_{B-0}}{a_{B-0}^{-}}}{\left(0.14 a_{B-0}^{-}\right) - a_{B-0}^{-}} = \frac{A_{3} - 0.14A_{2}}{a_{B-0} - 0.14 a_{B-0}^{-}}$$
(S.4)

The calculated molar fractions through Eqs. (S.1), (S.3) and (S.4) for the glass x=0.50 are $X_1 = 0.145$, $X_0 = 0.447$ and $X_4 = X_{4m} + X_{4o} = 0.408$, whereas for the glass x=0.60 the corresponding values are $X_1 = 0.089$, $X_0 = 0.576$ and $X_4 = X_{4m} + X_{4o} = 0.335$. The individual fractions X_{4m} and X_{4o} were obtained by employing Eqs. (19) of the manuscript, resulting in $X_{4m} = 0.366$ and $X_{4o} = 0.042$ for x=0.50 and $X_{4m} = 0.281$ and $X_{4o} = 0.054$ for x=0.60. The obtained relative fractions X_{4m}/X_4 are and X_{4o}/X_4 are shown in Fig. 8b.