Supplementary Information

Short-range structure, the role of bismuth and property-structure correlations in bismuth borate glasses

C.P.E. Varsamis ${ }^{1 *}$, N. Makris ${ }^{2}$, C. Valvi ${ }^{3}$ and E.I. Kamitsos ${ }^{2 *}$
${ }^{1}$ Applied Physics Laboratory, Faculty of Engineering, University of West Attica, 250 Thivon, 11241 Egaleo, Attica, Greece
${ }^{2}$ Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Ave., 11635 Athens, Greece
${ }^{3}$ Electronic Devices and Materials Laboratory, Department of Electrical and Electronics Engineering, University of West Attica, 250 Thivon, 11241 Egaleo, Attica, Greece
*Corresponding authors: cvars@uniwa.gr (C.P.E. Varsamis); eikam@eie.gr (E.I. Kamitsos)

S1. Application of infrared spectroscopy for the calculation of the molar fractions of the borate species present in glasses $x=0.50$ and 0.60 of the system $x^{2} \mathrm{Xi}_{2} \mathrm{O}_{3}-(1-\mathrm{x}) \mathrm{B}_{2} \mathrm{O}_{3}$.

Based on the discussion in Sections 3.1 and 4.1, the borate speciation in glasses $\mathrm{x}=0.50$ and 0.60 involves pyro-borate $\mathrm{B}_{0}{ }_{2}{ }^{2-}$ and ortho-borate $\mathrm{BO}_{3}{ }^{3-}$ trigonal units and tetrahedral units in the form of either meta-borate $\mathrm{B}_{4}{ }^{-}$or ortho-borate $\mathrm{B}_{2} \mathrm{O}_{2}{ }^{3-}$ species. For the evaluation of the corresponding molar fractions we consider the mass balance equation:

$$
\begin{equation*}
X_{4 m}+X_{4 o}+X_{1}+X_{0}=1 \tag{S.1}
\end{equation*}
$$

$X_{4 m}, X_{4 o}$ denote the molar fraction of the $\mathrm{B}_{4}{ }^{-}$and $\mathrm{B}_{2} \mathrm{O}_{2}{ }^{3-}$ tetrahedral units, and ${ }^{X_{1}}, X_{0}$ are the molar fractions of $\mathrm{BOO}_{2}{ }^{2-}$ and $\mathrm{BO}_{3}{ }^{3-}$ triangular units, respectively. Besides Eq. (S1), we apply a pair of equations similar to Eqs. (15) in the manuscript for the two component bands in Table 2 with frequency v_{2} and v_{3} in the ranges $1290-1315 \mathrm{~cm}^{-1}$ and $1185-1199 \mathrm{~cm}^{-1}$, respectively:

$$
\begin{align*}
& A_{2}=\left(X_{1}+X_{0}\right) a_{B-O^{-}} \tag{S.2a}\\
& A_{3}=X_{1} a_{B-\varnothing}+0.14 X_{0} a_{B-O^{-}} \tag{S.2b}
\end{align*}
$$

where ${ }^{A_{2}}$ and ${ }^{A_{3}}$ are the normalized integrated intensities of the bands with frequency v_{2} and v_{3}, respectively. Using the previously calculated values for $a_{B-O^{-}}=0.785 \mathrm{~cm}^{-2}$ and $a_{B-\varnothing}=0.4624 \mathrm{~cm}^{-2}$, the molar fractions of pyroborate species $\mathrm{B}_{\square} \mathrm{O}_{2}{ }^{2-}, X_{1}$, and orthoborate species $\mathrm{BO}_{3}{ }^{3-}$, X_{0}, can be evaluated directly from Eqs. (S.2a) and (S.2b) as follows:
$X_{0}=\frac{A_{3}-A_{2} \frac{a_{B-\varnothing}}{a_{B-O^{-}}}}{\left(0.14 a_{B-O^{-}}\right)-a_{B-\varnothing}}$
$X_{1}=\frac{A_{2}}{a_{B-O^{-}}}-\frac{A_{3}-A_{2} \frac{a_{B-\varnothing}}{a_{B-O^{-}}}}{\left(0.14 a_{B-O^{-}}\right)-a_{B-\varnothing}}=\frac{A_{3}-0.14 A_{2}}{a_{B-\varnothing}-0.14 a_{B-O^{-}}}$

The calculated molar fractions through Eqs. (S.1), (S.3) and (S.4) for the glass $\mathrm{x}=0.50$ are $X_{1}=0.145, X_{0}=0.447$ and $X_{4}=X_{4 m}+X_{4 o}=0.408$, whereas for the glass $\mathrm{x}=0.60$ the corresponding values are $X_{1}=0.089, X_{0}=0.576$ and $X_{4}=X_{4 m}+X_{40}=0.335$. The individual fractions $X_{4 m}$ and ${ }^{X_{40}}$ were obtained by employing Eqs. (19) of the manuscript, resulting in $X_{4 m}=0.366$ and $X_{40=0.042}$ for $\mathrm{x}=0.50$ and $X_{4 m}=0.281$ and $X_{40}=0.054$ for $\mathrm{x}=0.60$. The obtained relative fractions $X_{4 m} / X_{4}$ are and X_{40} / X_{4} are shown in Fig. 8 b .

