SUPLEMENTARY INFORMATION

Canonical and explicitly-correlated coupled cluster correlation energies of sub-kJ/mol accuracy via cost-effective hybrid-post-CBS extrapolation

A.J.C. Varandas^{*,†,‡,¶}

†Department of Physics, Qufu Normal University, China

Department of Physics, Universidade Federal do Espírito Santo, 29075-910 Vitória, Brazil

 ¶Department of Chemistry, and Chemistry Centre, University of Coimbra, 3004-535
 Coimbra, Portugal

E-mail: varandas@uc.pt

# in TS-106	Formula	Name	# in A24 + TS-106	
1	CFN	Cyanogen fluoride	25	
2	CFN	Isocyanogen fluoride	26	
3	CF_2	Singlet diffuoromethylene	27	
4	$\rm CF_2O$	Carbonyl fluoride	28	

Table 1: Systems in TS-106

# in TS-106	Formula	Name	# in A24 + TS-106	
5	CF_4	Tetrafluoromethane	29	
6	CHF	Singlet fluoromethylene	30	
7	CHFO	Formyl fluoride	31	
8	CHF_3	Trifluoromethane	32	
9	CHN	Hydrogen cyanide	33	
10	CHN	Hydrogen isocyanide	34	
11	CHNO	Cyanic acid	35	
12	CHNO	Isocyanic acid	36	
13	CHNO	Formonitrile oxide	37	
14	CHNO	Isofulminic acid	38	
15	CH_2	Singlet methylene	39	
16	$\mathrm{CH}_2\mathrm{F}_2$	Difluoromethane	40	
17	$\mathrm{CH}_2\mathrm{N}_2$	Cyanamide	41	
18	$\mathrm{CH}_2\mathrm{N}_2$	3H-Diazirine	42	
19	$\mathrm{CH}_2\mathrm{N}_2$	Diazomethane	43	
20	$\rm CH_2O$	Formaldehyde	44	
21	$\rm CH_2O$	Hydroxymethylene	45	
22	$\rm CH_2O_2$	Dioxirane	46	
23	$\rm CH_2O_2$	Formic acid	47	
24	$\mathrm{CH}_{2}\mathrm{O}_{3}$	Performic acid [*]	48	
25	CH_3F	Fluoromethane	49	
26	$\mathrm{CH}_3\mathrm{N}$	Methanimine	50	
27	$\rm CH_3NO$	Formamide	51	
28	$\rm CH_3NO_2$	Methyl nitrite [*]	52	

continued from previous page

# in TS-106	Formula	Name	# in A24 + TS-106	
29	$\rm CH_3NO_2$	Nitromethane*	53	
30	CH_4	Methane	54	
31	$\rm CH_4N_2O$	Urea*	55	
32	$\rm CH_4O$	Methanol	56	
33	$\rm CH_5N$	$Methylamine^*$	57	
34	CO	Carbon monoxide	58	
35	$\rm CO_2$	Carbon dioxide	59	
36	C_2F_2	Difluoroacetylene	60	
37	C_2F_4	${\it Tetrafluoroethylene}^*$	61	
38	C_2HF	Fluoroacetylene	62	
39	C_2HF_3	Trifluoroethylene	63	
40	$\mathrm{C}_{2}\mathrm{H}_{2}$	Acetylene	64	
41	$\mathrm{C_2H_2F_2}$	1,1-Difluoroethylene	65	
42	C_2H_2O	Ketene	66	
43	C_2H_2O	Oxirene	67	
44	$\mathrm{C_{2}H_{2}O_{2}}$	Glyoxal	68	
45	C_2H_3F	Fluoroethylene	69	
46	C_2H_3FO	Acetyl fluoride [*]	70	
47	C_2H_3N	$Acetonitrile^*$	71	
48	C_2H_3N	Methyl isocyanide [*]	72	
49	C_2H_4	Ethylene	73	
50	C_2H_4O	Acetaldehyde*	74	
51	C_2H_4O	Oxirane*	75	
52	$C_2H_4O_2$	Acetic acid [*]	76	

continued from previous page

# in TS-106	Formula	Name	$\# \mbox{ in A24} + \mbox{TS-106}$
53	$C_2H_4O_2$	Methyl formate [*]	77
54	C_2H_5F	$Fluoroethane^*$	78
55	C_2H_5N	$Aziridine^*$	79
56	C_2H_6	$Ethane^*$	80
57	C_2H_6O	Dimethyl ether*	81
58	C_2H_6O	$Ethanol^*$	82
59	C_2N_2	Cyanogen	83
60	$\mathrm{C_{3}H_{3}N}$	$Acrylonitrile^*$	84
61	C_3H_4	Allene*	85
62	C_3H_4	$Cyclopropene^*$	86
63	C_3H_4	Propyne*	87
64	$\mathrm{C}_{3}\mathrm{H}_{6}$	$Cyclopropane^*$	88
65	C_3H_6	Propene*	89
66	C_3H_8	Propane*	90
67	C_3O_2	Carbon suboxide	91
68	C_4H_4	Butatriene*	92
69	C_4H_4	$\operatorname{Cyclobutadiene}^*$	93
70	C_4H_4	Tetrahedran*	94
71	C_4H_4	$Vinylacetylene^*$	95
72	C_4N_2	$\operatorname{Dicyanoacetylene}^*$	96
73	FH	Hydrogen fluoride	97
74	FHO	Hypofluorous acid	98
75	FHO_2	Fluoroperoxide	99
76	$\mathrm{FH}_{2}\mathrm{N}$	Monofluoroamine	100

continued from previous page

# in TS-106	Formula	Name	# in A24 + TS-106	
77	$\mathrm{FH}_3\mathrm{N}_2$	Fluorohydrazine*	101	
78	FNO	Nitrosyl fluoride	102	
79	F_2	Difluorine	103	
80	F_2N_2	Difluorodiazene (cis)	104	
81	F_2N_2	Difluorodiazene (trans)	105	
82	F_2O	Difluorine monoxide	106	
83	F_2O_2	Perfluoroperoxide	107	
84	F_3N	Trifluoroamine	108	
85	HNO	Nitrosylhydride	109	
86	HNO_2	Nitrous acid (cis)	110	
87	HNO_2	Nitrous acid (trans)	111	
88	HNO_2	Nitrous acid	112	
89	HNO_3	Nitric acid	113	
90	HN_3	Hydrogen azide	114	
91	H_2N_2	Diazene (cis)	115	
92	$\mathrm{H}_2\mathrm{N}_2$	Diazene (trans)	116	
93	H_2N_2	Diazene (iso)	117	
94	H_2N_2O	Nitrosamide	118	
95	$\rm H_2O$	Water	119	
96	$\mathrm{H}_{2}\mathrm{O}_{2}$	Hydrogen peroxide	120	
97	H_3N	Ammonia 121		
98	H ₃ NO	Ammonia oxide	122	
99	H ₃ NO	Hydroxylamine	123	
100	H_4N_2	Hydrazine	124	

continued from previous page

# in TS-106	Formula	Name	# in A24 + TS-106	
101	N_2	Dinitrogen	125	
102	N_2O	Nitrous oxide	126	
103	N_2O_3	Dinitrogen trioxide [*]	127	
104	N_2O_4	Dinitrogen tetraoxide [*]	128	
105	O_3	Ozone	129	
106	H_2	Dihydrogen	130	

continued from previous page

^{*a*}Reference energy obtained at CBS(Q, 5) level of theory; see the text.

Table 2: CBS extrapolated PNO-LCCSD(T)/VXZ correlation energies^{*a*}) for linear HCN···HCN, HF dimer, ethyne dimer (T-shaped), and Ar-methane (systems #3, #4, #12 and #20 in A24, respectively) at their optimized CCSD(T) equilibrium geometries^{*b*}) and separated-monomers^{*c*} limit.

	HCN dimer		HF dimer			
CBS ext. pair	$E_e^{\operatorname{cor} d)}$	$E_{\infty}^{\operatorname{cor} e)}$	$D_e^{\operatorname{cor} f)}$	$E_e^{\operatorname{cor} d)}$	$E_{\infty}^{\operatorname{cor} e)}$	$D_e^{\operatorname{cor} f)}$
CCSD(T)						
(d,t)	-0.80230164	-0.80117666	-0.706	-0.63737814	-0.63613851	-0.778
(d,q)	-0.80143966	-0.80039410	-0.656	-0.64186294	-0.64057387	-0.809
(t,q)	-0.80108098	-0.80006846	-0.635	-0.64407563	-0.64241951	-0.822
(d, 5)	-0.80088421	-0.79987557	-0.633	-0.64372915	-0.64281505	-0.791
(t,5)	-0.80068268	-0.79969057	-0.623	-0.64502791	-0.64376435	-0.793
(q,5)	-0.80047594	-0.79949443	-0.616	-0.64570203	-0.64446238	-0.778
$pCBS^{g)}$	-0.80059817	-0.79963014	-0.607	-0.64624114	-0.64490381	-0.839
$pCBS^{h}$	-0.8003676	-0.7993702	-0.626	-0.6459013	-0.6446260	-0.800
CCSD(T)-F12b						
(d,t)	-0.79964694	-0.79866528	-0.616	-0.64351886	-0.64211475	-0.881
(d,q)	-0.79855259	-0.79751559	-0.651	-0.64377769	-0.64236484	-0.887
(t,q)	-0.79825489	-0.79720283	-0.660	-0.64384810	-0.64243287	-0.888
$pCBS^{i)}$	-0.79791029	-0.79684080	-0.671	-0.64392960	-0.64251162	-0.890
$pCBS^{j)}$	-0.8000274	-0.7989896	-0.651	-0.6458628	-0.6445563	-0.810
h-pCBS(dt, dt)	-0.79928143	-0.79831951	-0.604	-0.64436433	-0.64293757	-0.895
h-pCBS(dt, tq)	-0.79841908	-0.79738522	-0.649	-0.64400559	-0.64258657	-0.890
	C_2H	L_2 dimer (C_{2v})		A	Ar-methane	
CBS ext. pair	$E_e^{\operatorname{cor} d)}$	$E_{\infty}^{\operatorname{cor} e)}$	$D_e^{\operatorname{cor} f)}$	$E_e^{\operatorname{cor} d)}$	$E_{\infty}^{\operatorname{cor} e)}$	$D_e^{\operatorname{cor} f)}$
CCSD(T)						
(d,t)	-0.73667232	-0.73523741	-0.900	-0.51476205	-0.51420012	-0.353
(d,q)	-0.73437935	-0.73283454	-0.969	-0.51451643	-0.51387710	-0.401
(t,q)	-0.73287815	-0.73127895	-1.004	-0.51441422	-0.51374269	-0.421
(d, 5)	-0.73342520	-0.73183466	-0.998	-0.51342741	-0.51259286	-0.524
(t,5)	-0.73233868	-0.73071612	-1.018	-0.51323764	-0.51236433	-0.548
(q, 5)	-0.73177472	-0.73013555	-1.023	-0.51262695	-0.51164890	-0.614
$pCBS^{g)}$	-0.73214088	-0.73048878	-1.037	-0.51427665	-0.51356176	-0.449
$pCBS^{h}$	-0.7318413	-0.7301604	-1.055	-0.5134963	-0.5125565	-0.590
CCSD(T)-F12b						
(d,t)	-0.73061866	-0.72897963	-1.028	-0.51351496	-0.51313920	-0.236
(d,q)	-0.72932376	-0.72771873	-1.007	-0.51271739	-0.51183231	-0.555
(t,q)	-0.72897150	-0.72737572	-1.001	-0.51250042	-0.51147679	-0.642
$pCBS^{i)}$	-0.72856375	-0.72697867	-0.995	-0.51224927	-0.51106526	-0.743
$pCBS^{j)}$	-0.7311028	-0.7295164	-0.996	-0.5148490	-0.5138796	-0.608
h-pCBS (dt, dt)	-0.72978518	-0.72811804	-1.046	-0.51334326	-0.51299313	-0.220
h-pCBS(dt, tq)	-0.72906207	-0.72745098	-1.011	-0.51264458	-0.51174799	-0.563

^{a)}Energies in hartree (E_h), except for D_e^{cor} that are in kcal mol⁻¹. ^{b)}Ref. 1 ^{c)}Separated monomers. ¹ ^{d)}Correlation energy at equilibrium. ^{e)}Correlation energy for separated monomers. ^{f)}Dissociation energy. ^{g)}Using only PNO-LCCSD(T) energies. ^{h)}See this work, Table 2. ⁱ⁾Using only PNO-LCCSD(T)-F12b energies.

References

(1) A. J. C. Varandas, Phys. Chem. Chem. Phys. (submitted for publication), 0 (2020).