Explanation of the Conductivity Difference of Half-Heusler Transparent Conductors by Ionization Energy

Mi Zhong^a, Wei Zeng^{**, b}, Fu-Sheng Liu^a, Bin Tang^c, Qi-Jun Liu^{*, a}

^a School of Physical Science and Technology, Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Chengdu 610031, People's Republic of China

^b Teaching and Research Group of Chemistry, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, People's Republic of China

 ^c State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China.

Corresponding Author

* E-mail: <u>qijunliu@home.swjtu.edu.cn</u>

** E-mail: <u>zengwei_chemistry@126.com</u>

Figure S1. Calculated total energy as a function of N for ABX compounds with LDA, GGA, GGA+TS, GGA+U and HSE06 functional for testing the convergence of the k-point mesh.

Figure S2. The determination of indirect band gaps of ABX compounds (HSE06).

Figure S3. Calculated electrostatic potentials ABX system with slab with a width of 7 layers.

Figure S4. Partial density of states (PDOS) of TaIrGe, TaIrSn, TiIrSb, and ZrIrSb within HSE06. The corresponding modulus of the crystalline orbital near the valence band edge, and isovalue of 5×10^{-2} a.u is adopted

	a (LDA-ultra)	a (LDA-	a (GGA-	a (GGA-	a (GGA+TS)	a (GGA+U)	a (HSE06)	Ref. [9]
		norm)	ultra)	norm)				
TaIrGe	5.893	5.861	6.059	5.914	6.002	6.039	5.852	6.026
	-2.21%	-2.74%	0.55%	-1.86%	-0.40%	0.22%	-2.89%	
TaIrSn	6.085	6.043	6.273	6.054	6.206	6.253	5.997	6.233
	-2.37%	-3.05%	0.64%	-2.87%	-0.43%	0.32%	-3.79%	
TiIrSb	6.010	5.980	6.148	6.032	6.093	6.159	5.881	6.169
	-2.58%	-3.06%	-0.34%	-2.22%	-1.23%	-0.16%	-4.67%	
ZrIrSb	6.200	6.189	6.334	6.246	6.275	6.327	6.106	6.372
	-2.70%	-2.87%	-0.60%	-1.98%	-1.52%	-0.71%	-4.17%	

Table S1 The calculated lattice constants of TaIrGe, TaIrSn, TiIrSb and ZrIrSb along with the previous reported values.

$E_{q}(E_{q}^{dir})$	GGA	GGA+TS	GGA+U	HSE06	Exp. ^[9, 18]	HSE06 ^[9]	HSE06 ^[18]
3(3							
TaIrGe	1.20	1.19	1.62 (2.68)	1.84 (3.19)	3.36 ^[18]	1.62 (2.49)	1.74 (3.1)
TIC	1.1.6	1.1.6	1.54 (0.04)	1 75 (2 77)	2 4 [0]	1.55 (0.05)	1 (1 (2 22)
TairSn	1.16	1.16	1.54 (2.24)	1.75 (2.77)	2.4 [9]	1.55 (2.26)	1.61 (2.33)
TiIrSb	0.98	1.01	1.41 (2.16)	1.81 (2.64)	2.4 [9]	1.63 (2.39)	1.69 (2.51)
			()			()	
ZrIrSb	1.61	1.65	1.82 (2.43)	2.22 (3.12)	3.2 [9]	1.91 (2.25)	2.06 (2.38)

Table S2 The calculated band gaps using different functional along with the previously experimental and theoretical results.

System	VBM-L	VBM-R	Sub-VBM-L	Sub-VBM-R	CBM-L	CBM-R
TaIrGe	0.78	0.83	0.41	0.92	0.51	0.36
TaIrSn	0.76	0.92	0.41	1.04	0.57	0.43
TiIrSb	2.23	0.72	5.85	1.01	0.81	0.67
ZrIrSb	2.21	0.65	2.62	0.90	0.75	0.46

Table S3. The effective masses of holes at VBM, Sub-VBM (sub-maximum ofvalence bands), and CBM.