Supporting Information

For

Effects of doping high-valence transition metal (V, Nb and Zr) ions on the structure and electrochemical performance of LIB cathode material LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂

Yan-Hui Chen,^a Jing Zhang,^a Yi Li,^a Yong-fan Zhang,^a Shu-Ping Huang,^{a*} Wei Lin,^{a*} Wen-Kai Chen,^{a,b,c*}

^a College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
^b State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou, Fujian 350116, China
^c Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry (FTCC), Xiamen University, Xiamen, Fujian 61005, China

*Corresponding author: Shuping Huang, Wei Lin and Wen-kai Chen E-mail address: huangshp@gmail.com wlin@fzu.edu.cn wkchen@fzu.edu.cn

Metal	Ni	Co	Mn	V	Nb	Zr
U value (eV) ^a	6.5	6.0	5.0	3.0	3.0	5.0

Table S1 The U values of TMs in NCM811

^a U values adopted from ref. ^{1, 2}.

Table S2 The lattice parameters for NCMs based on DFT+D3 calculation and experiment,

 and the average calculated bond lengths of Li-O

Method	NCM	<i>a</i> (Å)	<i>c</i> (Å)	V (Å ³)	Li-O (Å)
Experiment ^a	Pristine	2.873	14.205	101.552	/
Calculation	Pristine	2.874	14.048	100.434	2.101
	V doped	2.873	14.059	100.486	2.100
	Nb doped	2.874	14.079	100.715	2.101
	Zr doped	2.874	14.090	100.920	2.102

^a The experimental lattice parameter adopted from ref. ³

 Table S3
 The lonic radii of transition metal ions of NCMs from ref.⁴

Metal ion	Radius (Å)	Metal ion	Radius (Å)
Ni ²⁺	0.69	Mn^{4+}	0.53
Ni ³⁺	0.56	V^{5+}	0.54
Ni ⁴⁺	0.48	Nb ⁵⁺	0.74
Co ³⁺	0.55	Zr^{4+}	0.84

Table S	54 The	oxidation	states	and	electronic	configurat	ions of	TMs	in NCMs
---------	--------	-----------	--------	-----	------------	------------	---------	-----	---------

Metal atom	Oxidation state	Electronic configuration
Ni	+2	$t_{2g}^{6}\left(\downarrow\uparrow \downarrow\uparrow \downarrow\uparrow \right)e_{g}^{2}(\uparrow \uparrow)$
	+3	$t_{2g}^{6}\left(\downarrow\uparrow \downarrow\uparrow \downarrow\uparrow \right)e_{g}^{1}(\uparrow)$
	+4	$t_{2g}{}^6(\downarrow\uparrow \downarrow\uparrow \downarrow\uparrow) \ e_g{}^0(\mid)$
Со	+3	$t_{2g}{}^6(\downarrow\uparrow \downarrow\uparrow \downarrow\uparrow) \ e_g{}^0(\mid)$

	+4	$t_{2g}{}^{5}(\downarrow\uparrow \downarrow\uparrow \downarrow) e_{g}{}^{0}(\mid)$
Mn	+4	$t_{2g}{}^{3}(\uparrow \uparrow \uparrow) e_{g}{}^{0}(\mid)$
V	+5	$t_{2g}^{0}() e_{g}^{0}()$
Nb	+5	$t_{2g}^{0}() e_{g}^{0}()$
Zr	+4	$t_{2g}^{0}() e_{g}^{0}()$

Table S5 The magnetic moments range and amounts of different Ni ions of the pristineand V-, Nb- and Zr-doped NCMs

NCM	Li content	$Ni^{2+}(\mu B)$	Amount	Ni ³⁺ (µB)	Amount	$Ni^{4+}(\mu B)$	Amount
pristine	1	1.63-1.55	6	1.16-0.94	42	/	0
	0.8	1.35	1	0.75-0.52	39	0.27-0.00	8
	0.6	/	0	0.69-0.33	30	0.22-0.01	18
	0.4	/	0	0.66-0.33	13	0.28-0.01	35
	0.2	/	0	0.36-0.31	2	0.22-0.00	46
	0	/	0	/	0	0.08-0.00	48
V doped	1	1.38-1.26	8	0.92-0.60	39	/	0
	0.8	1.32-1.21	3	0.98-0.45	37	0.25-0.03	7
	0.6	1.25	1	0.95-0.34	25	0.27-0.01	21
	0.4	/	0	0.72-0.30	15	0.28-0.00	32
	0.2	/	0	0.39	1	0.27-0.00	46
	0	/	0	/	0	0.10-0.00	47
Nb doped	1	1.43-1.19	9	0.82-0.45	38	/	0
	0.8	1.31-1.26	3	0.77-0.33	37	0.20-0.04	7
	0.6	1.34	1	0.80-0.36	29	0.29-0.03	17
	0.4	/	0	0.70-0.35	18	0.22-0.00	29
	0.2	/	0	0.61-0.37	4	0.15-0.00	43
	0	/	0	/	0	0.06-0.00	47
Zr doped	1	1.44-1.20	7	0.92-0.59	40	/	0
	0.8	1.27-1.25	2	0.87-0.33	38	0.15-0.01	7
	0.6	1.14	1	0.88-0.32	27	0.24-0.00	19
	0.4	/	0	0.70-0.38	15	0.28-0.00	32
	0.2	/	0	0.56-0.35	2	0.25-0.00	45
	0	/	0	/	0	0.05-0.00	47

Fig. S1 The TM ordering of the model 1 from Ref. ⁵.

Fig. S2 (a-d) The *a* lattice parameters and TM-O bond lengths of the pristine and V-, Nband Zr-doped NCMs, respectively.

Fig. S3 (a-d) The *c* lattice parameters and Li-O bond lengths of the pristine and V-, Nband Zr-doped NCMs, respectively.

References

- 1. C. Liang, F. Kong, R. C. Longo, C. Zhang, Y. Nie, Y. Zheng and K. Cho, *J. Mater. Chem. A*, 2017, **5**, 25303-25313.
- 2. R. C. Longo, F. Kong, C. Liang, D.-H. Yeon, J. Yoon, J.-H. Park, S.-G. Doo and K. Cho, *J. Phys. Chem. C*, 2016, **120**, 8540-8549.
- 3. T. Weigel, F. Schipper, E. M. Erickson, F. A. Susai, B. Markovsky and D. Aurbach, *ACS Energy Lett.*, 2019, **4**, 508-516.
- 4. R. D. Shannon, Acta Cryst., 1976, A32, 751-767.
- M. Dixit, B. Markovsky, F. Schipper, D. Aurbach and D. T. Major, *J. Phys. Chem. C*, 2017, 121, 22628-22636.