Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2021

Electronic Supporting Information: Strain-driven Phase Transition and Spin Polarization of Re-doped Transition-Metal Dichalcogenides

Rui-Ning Wang,^{1,*} Chen-Dong Jin,¹ Hu Zhang,¹ Ru-Qian Lian,¹ Xing-Qiang Shi,¹ and Jiang-Long Wang^{1,†}

¹Key Laboratory of Optic-Electronic Information and Materials of Hebei Province,

National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices,

Key Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province,

College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China

(Dated: March 8, 2021)

FIG. S1: (Color online). Calculated band structures of 1H-Re_{0.5}M_{0.5}X₂ monolayers without strain ((a) 1H-Re_{0.5}M_{0.5}S₂, (b) 1H-Re_{0.5}M_{0.5}Se₂, (c) 1H-Re_{0.5}M_{0.5}Te₂, (d) 1H-Re_{0.5}W_{0.5}S₂, (e) 1H-Re_{0.5}W_{0.5}Se₂, (f) 1H-Re_{0.5}W_{0.5}Te₂). The fermi level is set to zero.

Under strain-free conditions, all of 1H-Re_{0.5}M_{0.5}X₂ (M = Mo, W and X = S, Se, Te) monolayers show n-type character, but the spin-up and spin-down bands are symmetric. Thus, all of them are non-magnetic.

FIG. S2: (Color online). Calculated band structures of 1H-Re_{0.5}Mo_{0.5}S₂ monolayer as a function of lattice constant \vec{a} ((a) 3.078 Å, (b) 3.013 Å, (c) 2.950 Å, (d) 2.886 Å, (e) 3.206 Å, (f) 3.270 Å, (g) 3.335 Å, (h) 3.399 Å.) with a fixed \vec{b} =5.553 Å. The fermi level is set to zero. Red: Spin-up bands; Green: Spin-down bands.

For 1H-Re_{0.5}Mo_{0.5}S₂ monolayers, their band structures as a function of lattice constant \vec{a} with a fixed \vec{b} =5.553 Å are shown in Fig. S2. All conduction bands cross down the Fermi level, showing n-type characters. Furthermore, the spin-down and spin-up bands are always symmetric under uniaxial compressive strains ($\vec{a} < 3.142$ Å, (a-d)). That is, a uniaxial compressive strain does not induce magnetism. When the tensile strain ($\vec{a} = 3.206$ Å) is applied, the spin splitting between the spin-up and spin-down bands starts to appear. When the lattice constant \vec{a} reaches to 3.335 Å, the splitting is sharply reduced and the magnetism will disappear.

FIG. S3: (Color online). Calculated spin-polarized orbital projected density of states (DOS, (a-d) Mo and (e-h) Re) as a function of lattice constant \vec{b} ((a,e) \vec{b} =5.553 Å, (b,f) \vec{b} =5.609 Å, (c,g) \vec{b} =5.665 Å, (d,h) \vec{b} =5.720 Å) for 1*H*-Re_{0.5}Mo_{0.5}S₂ with a fixed \vec{a} = 3.142 Å. Positive and negative values represent the spin-up and spin-down DOS, respectively. The Fermi level is taken as zero.

With a fixed $\vec{a} = 3.142$ Å, as a tensile uniaxial strain is applied to 1H-Re_{0.5}Mo_{0.5}S₂ along the \vec{b} direction, the density of states around the Fermi level become narrower and narrower with increasing the tensile strain. As shown in Fig. S3(c, g), when \vec{b} =5.665 Å, the density of states begin to split, further leading to the magnetism appearing.

FIG. S4: (Color online). Calculated magnetic moments (μ_B) as a function of the additional virtual electrons for 1*H*-MoS₂ with $\vec{a} = 3.142$ Å and $\vec{b} = 5.887$ Å and 1*T_d*-MoTe₂ with $\vec{a} = 3.670$ Å and $\vec{b} = 6.357$ Å. Their corresponding magnetic moments for 1*H*-Re_{0.5}Mo_{0.5}S₂ and 1*T_d*-Re_{0.5}Mo_{0.5}Te₂ are indicated by dashed lines as the reference values.

Because Re doping will introduce one additional electron to MX_2 monolayers, we use the virtual electron approximation method to simulate the magnetic properties by Re doping. For monolayer 1*H*-MoS₂ with $\vec{a} = 3.142$ Å and $\vec{b} = 5.887$ Å, Re doping induce 0.684 μ_B while one additional electron only induces the magnetic moment (0.125 μ_B). For monolayer 1*T*_d-MoTe₂ with $\vec{a} = 3.670$ Å and $\vec{b} = 6.357$ Å, the magnetic moments are 0.753 μ_B and 0.512 μ_B for Re doping and one virtual electron doping, respectively.

FIG. S5: (Color online). Calculated spin-polarized atomic orbital projected density of states (DOS) (a) 1H-MoS₂, (b) 1H-ReS₂, (c,d) 1H-Re_{0.5}Mo_{0.5}S₂ in a perfect hexagonal lattice, and (e,f) fully optimized 1H-Re_{0.5}Mo_{0.5}S₂ without strain. (a, c, e) and (b, d, f) panels indicate the Mo and Re atoms, respectively. Positive and negative values represent the spin-up and spin-down DOS, respectively. The Fermi level is taken as zero.

Fig. S5(a) gives the Mo atomic orbital projected density of states in pure 1*H*-MoS₂, showing one d_{z^2} orbit and two degenerate $d_{xy}/d_{x^2-y^2}$ orbits around the Fermi level. Fig. S5(b) gives the Re atomic orbital projected density of states in pure 1*H*-ReS₂, showing one d_{z^2} orbit and two degenerate $d_{xy}/d_{x^2-y^2}$ orbits through the Fermi level because one additional electron is doped. Fig. S5(c, d) give the Mo and Re atomic orbital projected density of states in 1*H*-Re_{0.5}Mo_{0.5}S₂ with a perfect hexagonal lattice (Mo at (0,0) site and Re at (0.5, 0.5) site), respectively. However, the original degenerate $d_{xy}/d_{x^2-y^2}$ orbits are split. For Mo atom, the d_{xy} orbit is closer to the Fermi level while the $d_{x^2-y^2}$ orbit of Re atom through the Fermi level. After full-optimization (Fig. S5(e, f)), the hexagonal lattice is broken, further leading to the d_{z^2} and d_{xy} orbits of Mo atom and the d_{z^2} and $d_{x^2-y^2}$ orbits of Re atom through the Fermi level.

FIG. S6: (Color online). Calculated band structures of $1T_d$ -Re_{0.5}Mo_{0.5}S₂ monolayers as a function of lattice constant \vec{b} ((a) 5.609 Å, (b) 5.498 Å, (c) 5.387 Å, (d) 5.276 Å, (e) 5.776 Å, (f) 5.887 Å, (g) 5.998 Å, (h) 6.109 Å) with a fixed $\vec{a} = 3.142$ Å. The fermi level is set to zero. Red: Spin-up bands; Green: Spin-down bands.

For $1T_d$ -Re_{0.5}Mo_{0.5}S₂ monolayers, their band structures as a function of lattice constant \vec{b} with a fixed \vec{a} =3.142 Å are shown in Fig. S6. All conduction bands cross down the Fermi level, showing n-type characters. Furthermore, the spin-down and spin-up bands are always symmetric. That is, a uniaxial compressive strain along the \vec{b} direction does not induce magnetism.

FIG. S7: (Color online). Calculated band structures of $1T_d$ -Re_{0.5}Mo_{0.5}S₂ monolayers as a function of lattice constant \vec{a} ((a) 3.078 Å, (b) 3.014 Å, (c) 2.950 Å, (d) 2.886 Å, (e) 3.206 Å, (f) 3.270 Å, (g) 3.335 Å, (h) 3.399 Å, (i) 3.463 Å, (j) 3.527 Å) with a fixed \vec{b} =5.720 Å. The fermi level is set to zero. Red: Spin-up bands; Green: Spin-down bands.

For $1T_d$ -Re_{0.5}Mo_{0.5}S₂ monolayers, their band structures as a function of lattice constants \vec{a} with a fixed $\vec{b} = 5.720$ Å are shown in Fig. S7. All conduction bands cross down the Fermi level, showing n-type character. Furthermore, the spin-down and spin-up bands are symmetric until a uniaxial tensile strain along the \vec{a} direction reaches to ~ 9.18% ($\vec{a} = 3.463$ Å). On the contrary, a uniaxial compressive strain along the \vec{b} direction seem to have no effect.

FIG. S8: (Color online). Calculated band structures of $1T_{d}$ -Re_{0.5}Mo_{0.5}Te₂ monolayers as a function of lattice constant \vec{b} ((a) 6.296 Å, (b) 6.235 Å, (c) 6.174 Å, (d) 6.113 Å, (e) 6.052 Å, (f) 6.418 Å, (g) 6.480 Å, (h) 6.541 Å, (i) 6.602 Å, (j) 6.663 Å) with a fixed \vec{a} =3.459 Å. The fermi level is set to zero. Red: Spin-up bands; Green: Spin-down bands.

For $1T_d$ -Re_{0.5}Mo_{0.5}Te₂ monolayers, their band structures as a function of lattice constant \vec{b} with a fixed $\vec{a} = 3.459$ Å are shown in Fig. S8. All the spin-down and spin-up bands are always symmetric, when a uniaxial compressive strain along the \vec{b} direction is applied.

FIG. S9: (Color online). Calculated spin-polarized atomic projected density of states ((a-d) Mo and (e-h) Re) as a function of lattice constant \vec{a} ((a,e) \vec{a} =3.459 Å, (b,f) \vec{a} =3.529 Å, (c,g) \vec{a} =3.600 Å, (d,h) \vec{b} =3.670 Å) for $1T_d$ -Re_{0.5}Mo_{0.5}Te₂ with a fixed \vec{b} = 6.357 Å. Positive and negative values represent the spin-up and spin-down bands, respectively. The Fermi level is taken as zero.

For $1T_d$ -Re_{0.5}Mo_{0.5}Te₂, the conduction bands of Re atoms move to the Fermi level and become narrower and narrower when a uniaxial tensile strain is applied along the \vec{a} direction. Finally, the conduction bands around the Fermi level are mainly contributed by Re's $d_{x^2-y^2}$, d_{z^2} and d_{yz} . Therefore, at a certain tensile strain, the magnetic moments are mainly attributed to these three orbits.

FIG. S10: (Color online). Top and side views of fully-optimized (a) 1*H*- and (b) $1T_d$ -Re_{0.5}Mo_{0.5}S₂ monolayers with $\vec{a} = 3.142$ Å and $\vec{b} = 5.887$ Å. Mo atoms, Pink; S atoms, yellow; Re atoms, blue.

Taking monolayer 1*H*- and $1T_d$ -Re_{0.5}Mo_{0.5}S₂ with $\vec{a} = 3.142$ Å and $\vec{b} = 5.887$ Å as examples, we do first-principles molecular dynamics simulations at 300 K. It is find that within up to 1 ps (the step size 1 fs) Re-doped Mo_{0.5}S₂ are thermodynamically stable. The corresponding structures are shown in Figs. S10 (a,b).

* Electronic address: rnwang@hbu.edu.cn

[†] Electronic address: jlwang@hbu.edu.cn