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S.1 Propagation of random noise  

A semilog plot, Figure S1, of the error propagation function 𝑔(𝑟) from Fig. 1B, C shows 

that random noise causes the largest errors in the recovered distance distribution at the 

shortest distances and steadily falls off throughout the window of valid distances and beyond. 

The curves obtained by the DeerAnalysis and MeTA approaches are consistent; the curves 

keep crossing each other. The rapid fluctuations in the two curves are caused by the limited 

number of nine realizations of random noise used to construct the curves. These minor 

fluctuations are also seen in Figure 6 between the black and white lines indicating the area 

that is essentially free of sampling and truncation noise. Figure S1 shows that Tikhonov 

regularization and MeTA are equally effective at recovering the distance distribution from the 

dipolar trace and are equally affected by random noise.  

  

Figure S1 Semilogarithmic plot comparing the error propagation functions 𝑔(𝑟) from Figure 

1B, C for random noise. 
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S.2  Scaling of the dipolar function 

According to eq. (1), the kernel in the Fredholm equation scales very simply: a change of 

𝑟 ⟶ 𝑛 𝑟 results in 𝑇 ⟶ 𝑛3 𝑇, which simultaneously results in increasing the 𝑃(𝑟) width n 

times. At the same time, the dipolar trace V(n3T) keeps its shape at the appropriate scaling 

time axis, Figure S2A, B. 

  

Figure S2 A) The mono-modal distance distribution function 𝑃(𝑟) with 𝛿𝑟 Τۄ𝑟ۃ = 0.1 B) The dipolar traces for 

the 𝑃(𝑟) using the same color code. The time axis was scaled by n3 to demonstrate that the shape of V(T) 

remains constant with 𝑟 ⟶ 𝑛 𝑟 scaling. 
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S.3  Propagation of random noise: the impact of noise amplitude, length of the 

dipolar trace, and sampling step 

Four parameters affect the shape of 𝑔(𝑟): the total experimental time 𝑇𝑎𝑙𝑙, the length 

of the dipolar trace 𝑇𝑡𝑟𝑎𝑐𝑒, the noise level σ, and the sampling step dT. We independently 

tested the impact of the noise amplitude σ and the sampling step dT on 𝑔(𝑟) using MeTA.  

● dT = const = 32 ns, 𝑇𝑡𝑟𝑎𝑐𝑒 = const, with σ varied (𝑇𝑎𝑙𝑙 varies automatically), Figure S3A. 

The amplitude of 𝑔(𝑟) grows linearly, Figure S3B, while its shape does not change. 

  

Figure S3 A) The error propagation function 𝑔(𝑟) for different random noise amplitudes σ at a fixed sampling 

step dT = 32 ns. B) The maximum of the 𝑔(𝑟) function at different noise amplitudes σ (circles) and the linear 

regression line. 
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● σ = const = 0.0625, 𝑇𝑡𝑟𝑎𝑐𝑒 = const, with dT varied (𝑇𝑎𝑙𝑙 varies automatically), Figure S4A. 

As dT increases, the amplitude of 𝑔(𝑟) decreases, Figure S4B, and the maximum of 𝑔(𝑟) 

shifts to longer distances, Figure S4C. The shift obeys the power law 

𝑟 (𝑚𝑎𝑥(𝑔(𝑟))) ~𝑑𝑇
1

3⁄  and corresponds to the minimum distance 𝑟𝑚𝑖𝑛 that can be 

recovered at a given sampling step dT.   

● σ = const = 0.0625, dT = const = 64 ns, 𝑇𝑡𝑟𝑎𝑐𝑒 varied (𝑇𝑎𝑙𝑙 varies automatically), Figure 

S5. The error propagation function is almost independent of 𝑇𝑡𝑟𝑎𝑐𝑒, except at distances > 

3-5 nm that lie beyond the window of valid distances for the shorter traces (0.756 - 1.26 

μs). The decrease is not unexpected. Truncation of the signal results in information loss 

about the dipolar trace at long distances and in redistribution or distortion of the distance 

distribution. But, noise at long times carries information about the frequency spectrum of 

the noise and how it is distributed in 𝑔(𝑟) function. We estimated a point rcr on each g(r), 

where the slope changes. Figure S5C shows a strong linear dependence of rcr on 𝑇𝑡𝑟𝑎𝑐𝑒.   

Figure S4 A) The error propagation function 𝑔(𝑟) at fixed noise amplitude σ for different sampling step dT. B) 

The maximum of 𝑔(𝑟) at different sampling steps (circles); and C) The distance of the maximum of 𝑔(𝑟) at 

different sampling steps (circles) and the regression line for 𝑑𝑇
1

3⁄  (line). 

Figure S5 The random error function 𝑔(𝑟) at fixed noise amplitude σ and sampling step dT and different length 

of the dipolar trace 𝑇𝑡𝑟𝑎𝑐𝑒. 
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S.4 Scaling of the distortions of f(r) for different truncation lengths 

Here we continue examining the propagation of truncation noise into errors in the 

recovered 𝑓(𝑟) function. We use a unimodal distribution function with <r> = 3 nm and vary 

𝛿𝑟/𝑟 from 0.01 to 0.1 for several different 𝑇𝑡𝑟𝑎𝑐𝑒= 𝑛/𝜔𝐷. Uncertainties in the position 𝑟𝑚𝑎𝑥 

of the 𝑓(𝑟) maximum and its amplitude 𝑓(𝑟𝑚𝑎𝑥), normalized to its maximal value at different 

truncation times, are shown in Figure S6A, B. The inaccuracy in determining <r> of the peak 

of the distribution is almost independent of the 𝛿𝑟 Τۄ𝑟ۃ  value and less than 3% when 𝑇𝑡𝑟𝑎𝑐𝑒≥ 

2 𝑇𝐷. However, the rate at which the width convergence to its “true” value does depend on 

𝛿𝑟 Τۄ𝑟ۃ , Figure S6B. The narrower the peak, the larger 𝑇𝑡𝑟𝑎𝑐𝑒 should be. The family of curves 

in Fig. S6 B scales with a coefficient k for the abscissa, Figure S6C. That scaling factor 

depends linearly on 𝛿𝑟 Τۄ𝑟ۃ , Figure S6D, and k enables us to predict the length of the dipolar 

trace required to recover 𝑓(𝑟) free from truncation noise. 

  

Figure S6 A) Position 𝑟𝑚𝑎𝑥 of the 𝑓(𝑟) maximum for different truncation times. B) Amplitude of 

𝑓(𝑟𝑚𝑎𝑥), normalized to its undistorted value, for different truncation times. C) Amplitude 𝑓(𝑟𝑚𝑎𝑥), 

normalized to its undistorted value, with the x-axis scaled by a factor k. D) The scaling factor k for 

different values of 𝛿𝑟 Τۄ𝑟ۃ  (points) and the linear regression fit (line). 
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S.5 Optimization of sampling noise in the eNUS scheme 

We examined different sampling schemes with 𝑇𝑡𝑟𝑎𝑐𝑒 = 5.04 μs by varying NPT at 

fixed b = 0.2 (a and dT1 vary automatically).  For each NPT, Figure S7, we calculate the 

mean square error (mse) between 𝑓(𝑟) and 𝑃(𝑟) for different ۃ𝑟ۄ (at fixed 𝛿𝑟 Τۄ𝑟ۃ . The 

optimal sampling scheme at each ۃ𝑟ۄ corresponds to dT1≈ dTopt = 𝜋ۃ𝑟3ۄ, at least near b = 0.2.  

  

Figure S7 Optimization of sampling noise for the eNUS. A) The mean square error (mse) between 

𝑓(𝑟) and 𝑃(𝑟) for different ۃ𝑟ۄ and number of points NPT with 𝑇𝑡𝑟𝑎𝑐𝑒 = 5.04 μs. B) Lengths of the 

initial sampling steps dT1 for each NPT. The horizontal lines indicate the optimal sampling step dTopt 

for each ۃ𝑟ۄ, with the same color code as in A). The vertical arrows reveal the coincidence between 

dT1 and dTopt. 
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S.6 Calculation of noise redistribution in the NUA scheme 

The NUA experiments emphasize measurements at the beginning of the dipolar trace. 

Shots per point SPP depend on the position i of each experimental point in the dipolar trace 

as 𝑆𝑃𝑃𝑖 ∝  𝑞𝑖. Keeping the total measurement time equal for two experiments means that the 

total number of shots are equal: if the US measurement requires n scans, then the NUA 

starting with the same SPP0 requires nx: 

𝑁𝑇 × 𝑛 = ∑ 𝑞𝑖𝑛𝑥

𝑁𝑇−1

𝑖=0

 

=
1 − 𝑞𝑁𝑇−1

1 − 𝑞
× 𝑛𝑥  

⇒ 𝑛𝑥 =
𝑁𝑇 × 𝑛(1 − 𝑞)

1 − 𝑞𝑁𝑇−1
 

which means that the number of shots at the i-th point of NUA is 

 𝑛𝑖 =
𝑁𝑇×𝑛(1−𝑞)𝑞𝑖

1−𝑞𝑁𝑇−1 . 

Further, if the noise in the US is σ0, then noise in NUA depends on i. Knowing that 

𝜎0 =
𝑐𝑜𝑛𝑠𝑡

√𝑛

𝜎𝑖 =
𝑐𝑜𝑛𝑠𝑡

√𝑛𝑖

 

giving 

 
𝜎𝑖 =

𝜎0√𝑛

√𝑛𝑖

 

=  𝜎0√
(1 − 𝑞𝑁𝑇−1)

𝑁𝑇(1 − 𝑞)𝑞𝑖
 

(S1) 
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S.7 Calculation of noise redistribution for US, eNUS and NUA  

The 2D plot in Figure 6 was built from calculations on a grid, which were then 

interpolated onto a finer grid for a smoother plot. For US, dT varied from 16 to 368 ns with a 

32 ns time step, for eNUS, NPT = 158, 105, 60, 50, 40, 30, 28, 26, 24, 22, 20, 18, 16, 15, 14, 

and for NUA the q-value was varied between 1 and 0.9 with a 0.01 step.  
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S.8  Comparison of eNUS with US 

To make it easier to compare the relative performance of eNUS and US with random 

noise, slices with the same ‘open window’ were extracted from Figure 6A and B. Their ratios 

were taken and used to construct Figure S8 which compares their normalized relative 

performance with random noise for the same ‘open window’. Blue shows where eNUS has 

better performance and Red where US is better. However, as Figure 6 shows, random noise is 

much more intense for both sampling schemes at shorter distances than it is at longer 

distances.  

            

Figure S8 Normalized comparison of the relative performance of eNUS versus US for the same ‘open window’ 

indicated by the dotted lines. Calculated from data in the data plotted in Figure 6A and B. The top slice 

corresponds to the Black and Red curves in Figure 7. 


