Charge-transfer electronic states in organic solar cells: A TDDFT study

Andrés F. Marmolejo-Valencia, Zaahel Mata-Pinzón Carlos Amador-Bedolla
(a)

o-BDTdFBT
(b)

(c)

Figure S1. (a) Structures of electron acceptor PCBM ([6,6]-phenyl-C61-butyric acid methyl ester), donor molecules 4-3HT and o-BDTdFBT. (b) Solvent evaporation simulation for o-BDTdFBT/PC ${ }_{61} \mathrm{BM}$ and (c) $4-3 \mathrm{HT} / \mathrm{PC}_{61} \mathrm{BM}$.

Figure S2. Electron-hole pair localization of the locally excited state LE computed from NTO, in the selected eD-eA adduct $4-3 \mathrm{HT} / \mathrm{PC}_{61} \mathrm{BM}$, showing dependency for each scheme.

Figure S3. Electron-hole pair localization of charge transfer states $\mathrm{CT}_{1}\left(\mathrm{CT}_{2}\right)$ computed from natural transition orbital calculation (NTO) for one eD-eA adduct $4-3 \mathrm{HT} / \mathrm{PC}_{61} \mathrm{BM}$ using different schemes. Curiously, the lowest charge tranfer state CT_{1} is equal to the charge transfer state most coupled $\left(\mathrm{CT}_{2}\right)$ to the locally excited state LE.

Figure S4. Electron-hole pairs computed for each electronic excited states in one adduct o-BDTdFBT/PC ${ }_{61} \mathrm{BM}$ using B3LYP scheme and NTO implementation.

Figure S5. Probability density function of LE state schemes for $4-3 H T / \mathrm{PC}_{61} \mathrm{BM}$ system using O-SRSH+PCM, O-SRSH, B3LYP+PCM and B3LYP schemes. Pearson correlation coefficent r between schemes was evaluated with kernel density stimation values.

Figure S6. Probability density function of CT_{1} state calculated from O-SRSH+PCM, O-SRSH, B3LYP+PCM and B3LYP schemes schemes in the $4-3 \mathrm{HT} / \mathrm{PC}_{61} \mathrm{BM}$ system. Pearson correlation coefficent r between schemes was computed with kernel density stimation values.

Figure S7. Probability density function of CT_{2} state schemes for $4-3 \mathrm{HT} / \mathrm{PC}_{61} \mathrm{BM}$ system using O-SRSH +PCM , O-SRSH, B3LYP+PCM and B3LYP schemes. Pearson correlation coefficent r between schemes was computed with kernel density stimation values.

Table S1. Charge difference relation δ calculated between two states that are involved in charge transfer processes.

Where $Q_{i i}^{D A}=Q_{i}^{D}-Q_{i}^{A}$ represents the charge difference between donor-fragment and acceptor-fragment charges in the state i.

