Charge-transfer electronic states in organic solar cells: A TDDFT study

Andrés F. Marmolejo-Valencia, Zaahel Mata-Pinzón Carlos Amador-Bedolla

Figure S1. (a) Structures of electron acceptor PCBM ([6,6]-phenyl-C61-butyric acid methyl ester), donor molecules 4-3HT and o-BDTdFBT. (b) Solvent evaporation simulation for o-BDTdFBT/PC₆₁BM and (c) 4-3HT/PC₆₁BM.

Figure S2. Electron-hole pair localization of the locally excited state LE computed from NTO, in the selected eD-eA adduct 4-3HT/PC₆₁BM, showing dependency for each scheme.

Figure S3. Electron-hole pair localization of charge transfer states CT_1 (CT_2) computed from natural transition orbital calculation (NTO) for one eD-eA adduct 4-3HT/PC₆₁BM using different schemes. Curiously, the lowest charge transfer state CT_1 is equal to the charge transfer state most coupled (CT_2) to the locally excited state LE.

 $\textbf{Figure S4.} \ \ \text{Electron-hole pairs computed for each electronic excited states in one adduct o-BDTdFBT/PC} \ \ \text{G1BM using B3LYP scheme and NTO implementation.}$

Figure S5. Probability density function of LE state schemes for 4-3HT/PC $_{61}$ BM system using O-SRSH+PCM, O-SRSH, B3LYP+PCM and B3LYP schemes. Pearson correlation coefficient r between schemes was evaluated with kernel density stimation values.

Figure S6. Probability density function of CT_1 state calculated from O-SRSH+PCM, O-SRSH, B3LYP+PCM and B3LYP schemes schemes in the 4-3HT/PC₆₁BM system. Pearson correlation coefficient r between schemes was computed with kernel density stimation values.

Figure S7. Probability density function of CT_2 state schemes for 4-3HT/PC₆₁BM system using O-SRSH+PCM, O-SRSH, B3LYP+PCM and B3LYP schemes. Pearson correlation coefficient r between schemes was computed with kernel density stimation values.

Table S1. Charge difference relation δ calculated between two states that are involved in charge transfer processes.

	$\delta = \frac{1}{2} \left Q_{ii}^{DA} + Q_{jj}^{DA} \right $			
		LE-CT ₁	CT ₁ -GS	LE-CT ₂
	4-3HT/PC ₆₁ BM			
SRSH+PCM		0.90±0.09	0.88±0.10	0.90±0.09
SRSH		0.92±0.08	0.88±0.07	0.91±0.06
B3LYP+PCM		0.89±0.09	0.86±0.10	0.88±0.09
B3LYP		0.91±0.11	0.85±0.10	0.91±0.10
	o-BDTdFBT/PC ₆₁ BM			
B3LYP		0.94±0.07	0.90±0.04	0.93±0.07

Where $Q_{ii}^{DA} = Q_i^D - Q_i^A$ represents the charge difference between donor-fragment and acceptor-fragment charges in the state