Core-softened water-alcohol mixtures: the solute-size effects

Electronic Supplementary material

Murilo S. Marques ^{*1,2}, Vinicius Fonseca Hernandes³, and José Rafael

Bordin³

¹Centro das Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, Rua Bertioga, 892, Morada Nobre, CEP 47810-059, Barreiras-BA, Brazil
²Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Caixa Postal 15051, CEP 91501-970, Porto Alegre - RS, Brazil
³Departamento de Física, Instituto de Física e Matemática, Universidade Federal de Pelotas. Caixa Postal 354, 96001-970, Pelotas, Brazil.

*e-mail: murilo.sodre@ufob.edu.br

1 Isobars with Temperature of Maximum Density (TMD)

1.1 Pure CSW potential

Figure 1: Isobars with temperature of maximum density (TMD) for pure CS water. From bottom to top: $P^* = 0.02, 0.03, 0.04..., 0.10$.

1.2 Methanol

Figure 2: Isobars with temperature of maximum density (TMD) for all concentrations analyzed in methanol aqueous solutions. For two first concentrations (($\chi = 0.01$ and $\chi = 0.05$), and from bottom to top: $P^* = 0.02, 0.03, 0.04..., 0.10$. For last concentration ($\chi = 0.10$), we have $P^* = 0.03, 0.04..., 0.09$.

1.3 Ethanol

Figure 3: Isobars with temperature of maximum density (TMD) for all concentrations analyzed in ethanol aqueous solutions.For the first concentration ($\chi = 0.01$), and from bottom to top: $P^* = 0.02, 0.03, 0.04..., 0.09$. For last concentration ($\chi = 0.05$), we have $P^* = 0.03, 0.04..., 0.09$

1.4 Propanol

Figure 4: Isobars with temperature of maximum density (TMD) for all concentrations analyzed in propanol aqueous solutions. From bottom to top: $P^* = 0.02, 0.03, 0.04..., 0.09$.

2 Isobars in Density-temperature plane for all solutions

2.1 Methanol

Figure 5: Isobars in aqueous solutions of methanol for all temperatures simulated in this work.

2.2 Ethanol

Figure 6: Isobars in aqueous solutions of ethanol for all temperatures simulated in this work.

2.3 Propanol

Figure 7: Isobars in aqueous solutions of propanol for all temperatures simulated in this work.

Peaks and discontinuities in Isothermal Compressibility 3

Pure CSW potential 3.1

Figure 8: Peaks in κ_T for pure CSW potential ($x_1 = 0.00$).

3.2 Solutions of methanol, ethanol and 1-propanol

Figure 9: Peaks in κ_T for $x_1 = 0.01, 0.05 \text{ and } 0.1$.

4 Peaks and discontinuities in Specific heat at constant pressure

4.1 Pure CSW potential

Figure 10: Peaks in $c_P(T)$ for pure CSW potential ($x_1 = 0.00$).

4.2 Solutions of methanol, ethanol and 1-propanol

Figure 11: Peaks in $c_P(T)$ for $x_1 = 0.01$.

Figure 12: Peaks in $c_P(T)$ for $x_1 = 0.05$ and 0.1.

5 Peaks and discontinuities in Isobaric compressibility coefficient of thermal expansion

5.1 Pure CSW potential

Figure 13: Peaks in $\alpha_P(T)$ for pure CSW potential ($x_1 = 0.00$).

Solutions of methanol, ethanol and 1-propanol 5.2

Figure 14: Peaks in $\alpha_P(T)$ for $x_1 = 0.01, 0.05$ and 0.1.

6 Critical values

Pure CSW potential			
X	P_c^*	T_c^*	$ ho_c^*$
0.00	0.125	0.590	0.2472
Methanol			
X	P_c^*	T_c^*	$ ho_c^*$
0.01	0.120	0.590	0.250124
0.05	0.120	0.590	0.255124
0.10	0.130	0.590	0.259300
Ethanol			
X	P_c^*	T_c^*	$ ho_c^*$
0.01	0.130	0.600	0.241481
0.05	0.130	0.600	0.242836
0.10	0.125	0.600	0.261500
Propanol			
X	P_c^*	T_c^*	$ ho_c^*$
0.01	0.120	0.580	0.256308
0.05	0.110	0.590	0.249583
0.10	0.110	0.590	0.252400

Table 1: Critical values for pressure, temperature and density for all concentrations.

7 Structural order parameter for all solutions

Figure 15: s_{ex}^* and τ^* behavior for ($\chi_{alc} = 0.01$).

Figure 17: s_{ex}^* and τ^* behavior for ($\chi_{alc} = 0.10$).