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S1 Description and validation of force fields 

Solvent molecules 

For the solvent molecules investigated herein, i.e., ortho-dichlorobenzene, bromobenzene, 

chlorobenzene, chloroform, para-xylene and toluene, we followed prior work by Wang et al.1 who 

utilized OPLS force field2 and united-atom model (except for chloroform, for which an all-atom 

description is necessary) in AMD simulations, with partial atomic charges obtained from CDP force 

field3,4 for chloroform and TraPPE force field5,6 for the others; see chemical structures and charge 

distributions in Fig. S1. According to TraPPE, partial atomic charges of para-xylene and toluene were 

not considered. The properties of ortho-dichlorobenzene, bromobenzene, chlorobenzene and chloroform 
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with (w/) and without (w/o) including partial atomic charges were compared. The results gathered in 

Table S1 indicated little difference in the computed values of system density (ρ), self-diffusion coefficient 

(D) and viscosity (η), with generally excellent agreement with experimental data available. 

For the calculations of solvent viscosity, we first equilibrated 500 solvent molecules for 1 ns in an 

NPT ensemble at 300 K and 1 bar to ensure the system density was properly converged. A 20 ns 

simulation was then carried out in NVT ensemble at 300 K for data collection. Following the Green-Kubo 

relation, the solvent viscosity can be evaluated from the time integration of the pressure tensor 

autocorrelation function: 

 η = 
V

kBT
∫ PACF(t)

∞

0

dt 

where V is the volume of the simulation system, kB is the Boltzmann constant, and T is absolute 

temperature. The autocorrelation function PACF(t) bears the form  

 PACF(t) = 
1

5
∑〈Pi(t)Pi(0)〉

i

 

where Pi represents each of the five independent components of the pressure tensor, (Pxx - Pyy)/2, (Pyy - 

Pzz)/2, Pxy, Pyz, and Pzx.
7,8 The element αβ of the pressure tensor can be evaluated via 

 Pαβ = 
1

V
(∑

PiαPiβ

mi
i

+ ∑ riαfiβ

i

) 

where Piα is the momentum of particle i in the direction of α, mi is its mass, fiβ is the force acting on it in 

the direction of β, and riα is its coordinate in the α axis; α and β denote x, y, or z in a Cartesian reference 
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system. The pressure tensor elements were saved every 2 fs during the NVT simulation. Instead of 

determining the viscosity from the integral directly, we fitted the time integration to a double-exponential 

function as previously suggested:9 

η(t) = Aατ1(1-e-t/τ1)+A(1-α)τ2(1-e-t/τ2) 

where A, α, τ1, and τ2 are fitted parameters. This approach was asserted to help prevent the arbitrariness 

traditional data analysis schemes could induce and thus provide a more reliable estimate of solvent 

viscosity.  

 

 

Fig. S1 Chemical structures of ortho-dichlorobenzene (oDCB), bromobenzene (BB), chlorobenzene 
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(CB), chloroform (CF), para-xylene (pXYL) and toluene (T), along with the distributions of partial 

atomic charges in unit of elementary charge (e) on each solvent molecule.  

 

Table S1 Physical properties of solvent molecules computed using AMD simulation data at 300 K and 1 

bar and comparison with experimental data 

  ρ (g/cm3) Exp.10 D (10-10 m2/s) Exp.11,12 η (cp) Exp.10 

oDCB 
w/ 1.308 ± 0.003 

1.306 
10.57 ± 0.02 

- 
1.133 

1.324 
w/o 1.307 ± 0.003 11.11 ± 0.03 1.030 

BB 
w/ 1.535 ± 0.008 

1.495 
12.51 ± 0.07 

12.98 
1.022 

1.074 
w/o 1.536 ± 0.008 12.87 ± 0.07 1.065 

CB 
w/ 1.111 ± 0.003 

1.106 
18.45 ± 0.04 

- 
0.738 

0.753 
w/o 1.109 ± 0.003 19.46 ± 0.05 0.645 

CF 
w/ 1.491 ± 0.006 

1.479 
25.72 ± 0.10 

28.85 
0.480 

0.537 
w/o 1.477 ± 0.006 28.50 ± 0.08 0.402 

pXYL w/o 0.863 ± 0.002 0.857 28.19 ± 0.08 - 0.518 0.603 

T w/o 0.867 ± 0.004 0.862 26.30 ± 0.06 25.45 0.566 0.560 

 

Poly(3-hexylthiophene) (P3HT) 

The force field and parameter values describing the atomic interactions of a regioregular P3HT were 

taken from the simulation model developed by Bhatta et al.13 This model adopted OPLS force field with 

torsional parameters and partial atomic charges computed from ab initio calculations. The computed 

crystalline structures, mass density, and melting point were all in good agreement with experimental 

measurements. As a further evaluation, the crystalline structure of P3HT was simulated under ambient 
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conditions (300 K and 1 bar), and a packing structure of non-interdigitated hexyl side chains was found 

(Fig. S2). The lattice parameters of a = 3.9 Å, b = 3.8 Å and c = 16.9 Å were in excellent agreement with 

early experimental characterization,14 where a, b, and c denote the directions of P3HT backbone, π-π 

stacking, and the hexyl side chain, respectively.  

 

 

Fig. S2 Snapshots of the packing structure of 28 P3HT (30-mer, for comparison with an early theoretical 

characterization)15 chains from AMD simulations performed at 300 K and 1 bar after 5 ns of the 

simulation: (a) top view with a π-π stacking axis toward the viewer, and (b) top view with P3HT backbone 

axis toward the viewer. Hydrogen atoms are omitted for clarity. 

 

S2 Calculation of solvation free energy for P3HT dimers 

Solvation Gibbs free energy (ΔG) is the free energy change associated with transferring a solute molecule 

from an ideal gas phase to the solution phase at a given temperature, pressure and solute concentration. 

It describes the change of state between full and non-existent solute-solvent interactions and can be 



S6 
 

evaluated by schemes such as thermodynamic integration (TI)16,17 and free energy perturbation (FEP).18-

20 The FEP method, first developed by Robert Zwanzig in 1954 for statistical mechanics of condensed 

phases,21 comprises a variety of techniques that all rely on the sampling of overlapping configurational 

space. Among them, the exponential averaging (EXP) method 

∆Gij = -kBTln〈exp(-[H(λj)-H(λi)]/kBT)〉λi
 

evaluates the difference of Hamiltonian, H, from λ states i and j, where 〈⋯〉λi
 denotes the ensemble 

average over configurations sampled from the λi state. The sum of all partial results, ΔGij, along the 

pathway of λ states from λ = 0 to λ = 1 yields the total free energy difference, ΔG. However, the estimate 

of ΔGij depends on whether λi or λj state is chosen as the reference. Alternatively, Bennett acceptance 

ratio (BAR) considers both perturbations sampled from λi and λj states in calculating ΔGij in order to 

remove the bias in EXP18,19,22 and was adopted in this study. The mean free energy and standard deviation 

were evaluated using ensemble averages from production data of Nb = 5 blocks. The standard deviation, 

σ[ΔG], was obtained by the following expression:18 

.σ[∆G] = √
∑ (∆Gi-∆G)

2Nb

 i =1

Nb(Nb-1)
 

where ΔGi denotes the average free energy for the ith block. 

    In solvation free energy calculations, intermediate states are characterized by scaled solute-solvent 

interactions. Using the linear scaling, the Hamiltonian of an intermediate state is defined by 
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H(λ) = (1-λ)H0+λH1 

with H0 and H1 being the Hamiltonian of full (λ = 0) and no (λ = 1) solute-solvent interactions. When 

inserting/removing a molecule in a dense solvent system, the effect of end-point singularity would lead 

to some numerical problems. In AMD simulations, repulsive interactions at small distances between the 

inserted/removed solute and the ambient solvent could hinder the sampling of the corresponding 

configurational space. Therefore, the interactions were interpolated via soft-core potentials (SCP) to 

flatten the curvature of H(λ), while the electrostatic interactions were linearly interpolated between 

neighboring states during the decoupling process.16-18,23 The SCP, VSC(r), is defined by 

VSC(r) = (1-λ)V0(r0)+λV1(r1) 

r0 = (ασ0
6λ

p
+r6)

1 6⁄
 

r1 = (ασ1
6(1-λ)

p
+r6)

1 6⁄
 

where V0 and V1 are the Lennard-Jones (LJ) potentials between two atoms at a distance of r for the fully 

coupled (λ = 0) and decoupled (λ = 1) states, respectively, and α is the soft-core parameter which controls 

the softness of the interaction potential. It has been reported that 0.5 represents an optimum value for α 

when the exponent p is unity.23,24 These values, as employed in previous simulations,17,23,25,26 were 

adopted in this study. We have also used 0.3 nm for the soft-core diameters of σ0 and σ1, as previously 

suggested.23,26,27 
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    For each solvent system, we first equilibrated a P3HT dimer with 500 solvent molecules (except for 

water, where 1000 molecules and TIP3P model were used) for a duration of 1 ns using NPT ensemble at 

300 K and 1 bar, followed by the NPT production run for 3 ns. This procedure was repeated for several 

discrete λ values from λ = 0 to λ = 1. Effects of finite box size were evaluated by also calculating the 

solvation free energy with 800 solvent molecules, confirming that the use of a smaller system with 500 

solvent molecules is sufficient.18,28 It has also been verified that the production run of 3 ns suffices to 

effectively sample all possible configurations, as a 5 ns test run produces similar results on solvation free 

energy. Because free energy is a state function, it is independent of the path taken for the transformation 

from the initial to final state. In practice, however, the choices of λ schedule could affect the precision of 

the computed free energy difference. First, the electrostatic interactions were decoupled before the van 

der Waals interactions were gradually turned off. This can help prevent two atoms of opposite charges 

from approaching closely enough to fall into the attractive singularity in the electrostatic 

potential.16,19,20,23 The linear 5-window schedule (λelec = 0.00, 0.25, 0.50, 0.75, 1.00)20,28 was used for 

electrostatic interactions, and the results are fairly identical to those using the 11-window schedule (λelec 

= 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0).17,23 For van der Waals interactions, 16-window 

schedule (λvdW = 0.00, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 

1.00) was used, as suggested in prior work.28 As there existed no reported values for the solvation free 

energy of P3HT dimer, we have also computed the hydration free energy of methane as well as the 
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solvation free energy of toluene in the CF medium. The results, 9.3 ± 0.2 and -22.9 ± 0.1 kJ/mole, 

respectively, are in excellent agreement with previously reported values (9.2 ± 0.6 and -25.1 ± 1.3 

kJ/mole, respectively).27 

    To gain further insight into the solvation process of P3HT, the solvation free energy was 

decomposed into entropic and enthalpic contributions. The change of entropy at a temperature T can be 

computed using the standard relationship 

∆S(T) = -(
∂∆G

∂T
)
P,N

 

Using finite-difference (FD) schemes,29,30 the above relationship can be approximated by 

∆S(T) = -
∆G(T+∆T)-∆G(T-∆T)

2∆T
 

Thus, we have performed independent simulations at each of the three temperatures T-ΔT, T and T+ΔT, 

where ΔT is 50 K. This FD approximation is based on the assumption that heat capacity is nearly constant 

over a range of temperatures near T. For aqueous solutions, this assumption usually holds valid near the 

room temperature with ΔT as large as 50 K.29,30 The choice of ΔT is important to minimize the statistical 

uncertainty associated with the FD approximation, with the statistical uncertainty for entropy being 

inversely proportional to ΔT according to the following relationship:29 

σ[T∆S(T)] = 
T

2∆T
(σ[∆G(T+∆T)]+σ[∆G(T-∆T)]) 

where σ[ΔG(T)] is the standard deviation associated with the Gibbs free energy of solvation at the 

temperature T. Thus, as ΔT becomes smaller, more expensive computations will be required to achieve 
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convergent results on the entropy of solvation. When ΔT is too large, on the other hand, the accuracy of 

the FD approximation deteriorates due to the failure of the linearity assumption of the free energy changes 

over the range of temperatures under consideration. The change of enthalpy, ΔH(T), is obtained using 

the difference between ΔG(T) and -TΔS(T), with the statistic error evaluated using the sum of the 

statistical uncertainties of the two quantities.  

 

S3 Static and dynamic properties of P3HT solutions with/without partial atomic charges 

 

Fig. S3 Radial distribution functions for (a) P3HT-oDCB, (b) P3HT-BB, (c) P3HT-CB and (d) P3HT-CF 

pairs with (solid lines) or without (dashed lines) including partial atomic charges for both polymer and 

solvent species. 
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Fig. S4 Occupation time correlation functions for (a) oDCB, (b) BB, (c) CB and (d) CF molecules 

residing in the first solvation shells with (solid lines) or without (dashed lines) including partial atomic 

charges for both polymer and solvent species. 

 

S4 Evaluation of various diffusivities of single P3HT chains 

The mass-center diffusivity (D) of single P3HT chains may be evaluated through the time-dependent 

mean-square displacements (MSDs): 

MSD = 〈|r(t)-r(0)|2〉 = 6Dt 
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where r(t) and r(0) denote the positions of the mass center of a P3HT chain at times t and 0, respectively. 

Simulation data were gathered when the MSDs notably exceed the square of the mean radius of gyration 

of the P3HT chain (~ 1.72 nm in all solvent media). Fig. S5 shows the simulation data of MSD/t vs. t for 

all six solvent media, and the chain diffusivity in each case is estimated when MSD/t reaches a plateau 

at times 8 ~ 10 ns. The diffusivities so obtained are gathered in Table S2.  

 

 

Fig. S5 Time-dependent MSD/t of single P3HT chains in oDCB (yellow), BB (red), CB (gray), CF 

(orange), pXYL (blue) and T (green) media; the double-head arrows indicate the time domain used to 

estimate chain diffusivities. 

 

Because of relatively short and, hence, rigid P3HT chains investigated herein, the translational 

diffusion is further decomposed into ones that are parallel (D∥) and perpendicular (D⊥) to the polymer 

backbone axis, respectively. The anisotropic translational diffusivities were evaluated using schemes 
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described in an early study on liquid benzenes.31 The unit end-to-end vector of the P3HT chain was used 

to define the motion parallel to the polymer backbone axis. Another vector that is orthogonal to a plane 

formed by this vector and the thiophene normal (which represents the average normal direction of all 

thiophenes on a chain) was used to define the motion perpendicular to the polymer backbone axis. The 

respective displacements were then obtained by decomposition of the overall mass-center displacement 

along the two directions. The displacements so obtained were discretized for every 50 ps, and the results 

were summed up and averaged to yield MSD∥ and MSD⊥ as a function of time. The D∥ and D⊥ can 

then be evaluated by the formula 

MSDi = 〈|ri(t)-ri(0)|2〉 = 2Di t                                                                     

where i denotes the parallel or perpendicular component. Statistical data collected during the interval 8 

~ 10 ns were used to estimate the anisotropic diffusivities of a P3HT chain; see Table S2.  

Note that the anisotropic diffusivities obtained using the methods described above should be 

considered as “effective” ones, as they were computed as if the polymer chain was restrained from 

reorienting.31 Thus, the results should not be directly compared with the mass-center diffusivity.  
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Table S2 Parallel (D∥) and perpendicular (D⊥) translational diffusivities and mass-center diffusivity (D) 

of a P3HT chain at 300 K and 1 bar in various solvent media  

(10-10 m2/s) D∥ D⊥ D  

oDCB 2.20 ± 0.08 1.28 ± 0.04 1.04 ± 0.01 

BB 1.03 ± 0.04 0.99 ± 0.02 1.06 ± 0.03 

CB 1.62 ± 0.10 1.30 ± 0.04 1.51 ± 0.02 

CF 2.69 ± 0.06 2.20 ± 0.07 2.10 ± 0.03 

pXYL 2.99 ± 0.04 2.16 ± 0.06 3.53 ± 0.03 

T 4.71 ± 0.13 2.59 ± 0.07 3.67 ± 0.05 

 

S5 Correlations of calculated solvent viscosity with solvation shell relaxation time and chain 

mobility, respectively  

 

Fig. S6 Correlation between the calculated solvent viscosity and the mean relaxation time of the first 

solvation shell for oDCB, BB, CB, CF, pXYL and T as the solvent medium. An approximately linear 

relationship between the two can be seen. 
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Fig. S7 Correlation between the calculated solvent viscosity and the mass-center diffusivity of P3HT 

chain for oDCB, BB, CB, CF, pXYL and T as the solvent medium. The linear relationship predicted by 

the Stokes-Einstein relation clearly does not apply for the P3HT solutions investigated. 
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