Supporting Information

The Effect of Defect Interactions on the Reductions of Doped Ceria

Steffen Grieshammer^{1,2,3}

¹Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.

²Helmholtz-Institut Münster (IEK-12), Forschungszentrum Jülich GmbH, Corrensstr. 46, 48149 Münster, Germany

³JARA-HPC, Germany, Forschungszentrum Jülich & RWTH Aachen University, Germany grieshammer@pc.rwth-aachen.de

Mass action law for interacting defects

The change of the Gibbs energy of the doped lattice due to reduction can be expressed as:

$$\Delta G_R = \Delta G_{Ce'} + \Delta G_V + \Delta G_{O_2} - k_B T \Delta S_{conf} + \Delta G_{inter}$$

This includes:

• The contributions from the formation of polarons, vacancies and oxygen molecules:

$$\Delta G_{\rm Ce'} = N_{\rm Ce'} \cdot g_{\rm Ce'}^{\circ}$$
$$\Delta G_{\rm V} = N_{\rm V} \cdot g_{\rm V}^{\circ}$$

 $\Delta G_{O_2} = N_{O_2} \cdot \mu_{O_2}$

where $N_{Ce'}$, N_V , N_{O_2} are the number of polarons, oxygen vacancies, and oxygen molecules, respectively.

• The ideal configurational entropy with the contributions before and after reduction:

$$\Delta S_{\text{conf}} = \ln \frac{(N_{\text{cation}})!}{(N_{\text{cation}} - N_{\text{Ce}'} - N_{\text{dot}})! N_{\text{Ce}'}! N_{\text{dot}}!} + \ln \frac{(N_{\text{anion}})!}{(N_{\text{anion}} - N_{\text{V}} - N_{\text{V},\text{dot}})! (N_{\text{V}} + N_{\text{V},\text{dot}})!} - \ln \frac{(N_{\text{cation}})!}{(N_{\text{cation}} - N_{\text{V},\text{dot}})! N_{\text{V},\text{dot}}!}$$

Where N_{dot} and $N_{V,dot}$ are the number of dopant ions on cerium sites and the number of oxygen vacancies introduced by doping, respectively and N_{cation} and N_{anion} are the total number of cations or anions.

• ΔG_{inter} , which refers to the total change of Gibbs energy due to defect interactions.

Due to charge neutrality and site balance, the constraints $2N_V = N_{Ce'}$, $2N_{V,dot} = N_{dot}$, and $N_V = 2N_{O_2}$ can be used and the equation rewritten in terms of the number of oxygen vacancies N_V using the relation $N_{cation} = \frac{1}{2}N_{anion} = N_{CeO_2}$ and $\Delta_r g = 2g_{Ce'}^{\circ} + g_V^{\circ} + 0.5\mu_{O_2}$:

$$\begin{aligned} \Delta G_R &= N_{\rm V} \cdot \Delta_r g \\ &- k_B T \ln \frac{(N_{\rm CeO_2})!}{(N_{\rm CeO_2} - 2N_{\rm V} - N_{\rm dot})!(2N_{\rm V})! N_{\rm dot}!} \\ &- k_B T \ln \frac{(2N_{\rm CeO_2})!}{(2N_{\rm CeO_2} - N_{\rm V} - N_{\rm V,dot})! (N_{\rm V} + N_{\rm V,dot})!} \\ &+ k_B T \ln \frac{(N_{\rm CeO_2})!}{(N_{\rm CeO_2} - N_{\rm dot})! N_{\rm dot}!} + k_B T \ln \frac{(2N_{\rm CeO_2})!}{(2N_{\rm CeO_2} - N_{\rm V,dot})! N_{\rm V,dot}!} \end{aligned}$$

 $+\Delta G_{inter}$

Minimizing this term with respect to N_V yields:

$$\frac{\partial \Delta G_R}{\partial N_V} = \Delta_r g + 2k_B T \ln \frac{2N_V}{N_{CeO_2} - 2N_V - N_{dot}} + k_B T \ln \frac{N_V}{2N_{CeO_2} - N_V - N_{V,dot}} + \frac{\partial \Delta G_{inter}}{\partial N_V} \stackrel{\text{def}}{=} 0$$

Using again the previous constraints and introducing the lattice mole fraction $\frac{N_{Ce'}}{N_{CeO_2}} = [Ce']$ and $\frac{N_V}{N_{CeO_2}} = [V_0^{\circ}] = \delta$ leads to: $\Delta_r g + 2k_B T \ln \frac{[Ce'_{Ce}]}{[Ce^x_{Ce}]} + k_B T \ln \frac{[V_0^{\circ}]}{[O_0^x]} + \frac{\partial \Delta_r g^{int}(T, \delta, N_{dot})}{\partial \delta} = 0$ Rearranging results in: $[V_0^{\circ}][Ce'_{Co}]^2 \qquad (\Delta r g) \qquad (\Delta r g^{int})$

$$\frac{|V_{0}^{\circ}|[Ce_{Ce}^{\prime}]}{[o_{0}^{\circ}][Ce_{Ce}^{\prime}]^{2}} = \exp\left(-\frac{\Delta_{r}g}{k_{B}T}\right)\exp\left(-\frac{\partial\Delta_{r}g^{int}}{k_{B}T \ \partial\delta}\right)$$

or
$$\frac{|V_{0}^{\circ}|[Ce_{Ce}^{\prime}]^{2}}{[o_{0}^{\circ}][Ce_{Ce}^{\prime}]^{2}}p_{O_{2}}^{\frac{1}{2}} = \exp\left(-\frac{\Delta_{r}g^{\circ}}{k_{B}T}\right)\exp\left(-\frac{\partial\Delta_{r}g^{int}}{k_{B}T \ \partial\delta}\right) = K(T) \cdot K_{int}(T,\delta)$$

 $\Delta_r g^\circ$ is the standard Gibbs energy of reduction and $\Delta_r g^{\text{int}}$ is the additional contribution per formula unit due to defect interactions. Neglecting volume changes in the solid, the approximation $\Delta_r g^{\text{int}} \approx \Delta_r f^{\text{int}}$ is applicable and we obtain

$$\frac{\left[\mathrm{V}_{\mathrm{O}}^{\circ}\right]\left[\mathrm{Ce}_{\mathrm{Ce}}^{\prime}\right]^{2}}{\left[\mathrm{O}_{\mathrm{O}}^{\mathrm{x}}\right]\left[\mathrm{Ce}_{\mathrm{Ce}}^{\mathrm{x}}\right]^{2}}p_{\mathrm{O}_{2}}^{\frac{1}{2}} = \exp\left(-\frac{\Delta_{r}g^{\circ}}{k_{B}T}\right)\exp\left(-\frac{\partial\Delta_{r}f^{\mathrm{int}}}{k_{B}T\,\partial\delta}\right) = K(T)\cdot K_{\mathrm{int}}(T,\delta)$$

Calculation of $\Delta_r u^{ ext{int}}$ and $\Delta_r f^{ ext{int}}$

The Metropolis Monte Carlo algorithm samples a sequence of states in thermodynamic equilibrium with the probability of each state being proportional to the respective Boltzman factor:

$$m \cdot M(E,T) = \Omega(E) \cdot \exp\left(\frac{-E}{k_{\rm B}T}\right)$$

Here, M(E,T) is the sampled distribution, $\Omega(E)$ is the total configurational space, and *m* is a proportionality constant. The interaction contribution to the internal energy per formula unit u^{int} is then just the average of the sampled states:

$$u^{\text{int}} = \frac{1}{2} \cdot \langle \sum_{i} \sum_{j} E_{ij} \rangle_{\text{MCS}} / N_{\text{CeO}_2} = \langle M(E,T) \rangle_E / N_{\text{CeO}_2}$$

The contribution to the internal energy of reduction $\Delta_r u^{\text{int}}$ is given by the difference between stoichiometric and non-stoichiometric composition.

However, as only a small part of the configurational space is sampled and the proportionality constant m is not known, the direct evaluation of the partition function and the free energy is not possible.

This problem is circumvented with the approach by Valleau and Card¹ where the sampled distribution $M(E, T_{\min})$ is connected to the random, non-interacting distribution $\Omega^*(E)$ by a series of bridging distributions. The bridging distributions are defined by their temperatures that are given by the factor $\alpha = T_{\min}/T$. For $\alpha = 1$ the desired distribution is obtained and for $\alpha = 0$ the random distribution is sampled. From the overlap of subsequent distributions, the individual factor m'_i can be obtained and the free energy of interaction, i.e. the difference between the interacting and the non-interacting system can be calculated from:

$$F_{\rm int} = -k_B T \cdot \sum \ln(m'_i)$$

The contribution to the free energy of reduction $\Delta_r f^{\text{int}}$ is given by the difference between stoichiometric and non-stoichiometric composition.

Energy parameters

Pair interaction energies were taken from refs.^{2, 3}. These energies were calculated with DFT+U using the PBE functional and $U_{\text{eff}} = 5 \text{ eV}$.

Trivalent Cation interactions

Table 1: Pair interactions for trivalent cations in eV.

RE^{3+}	$RE'_{Ce} - V_0^{\bullet \bullet} 1NN$	$RE'_{Ce} - V_0^{\bullet \bullet} 2NN$	$RE'_{Ce} - Ce'_{Ce}$ 1NN
Sc	-0.75	-0.22	0.1
Lu	-0.48	-0.12	0.1
Y	-0.35	-0.14	0.1
Gd	-0.29	-0.13	0.1
Sm	-0.24	-0.14	0.1
Nd	-0.18	-0.17	0.1
Ce	-0.14	-0.19	0.1
La	-0.12	-0.20	0.1

Vacancy-vacancy interactions

Table 2: Pair interactions between two vacancies, depending on the distance. 3 NN(a) and 3 NN(b) differentiate interactions without and with a cation position between the vacancies.

Neighbor position	interaction / eV	
1 NN	0.90	
2 NN	0.33	
3 NN(a)	0.32	
3 NN(b)	0.46	
4 NN	0.34	

Zirconium ion interactions

Table 3: Interactions for defect pairs containing zirconium ions in ceria.

Defect pair	interaction / eV
$Zr_{Ce}^{\times} - V_0^{\bullet \bullet}$ 1NN	-0.6
$Zr_{Ce}^{\times} - V_0^{\bullet \bullet}$ 2NN	-0.05
$Zr_{Ce}^{\times} - Zr_{Ce}^{\times}$ 1NN	-0.01
$Zr_{Ce}^{\times} - Y_{Ce}^{\prime}$ 1NN	0.0
$Zr_{Ce}^{\times} - Gd_{Ce}^{\prime}$ 1NN	0.0
$Zr_{Ce}^{\times} - Ce_{Ce}^{\prime}$ 1NN	0.0

References

- 1. J. P. Valleau, *The Journal of Chemical Physics*, 1972, **57**, 5457.
- 2. S. Grieshammer, M. Nakayama and M. Martin, *Phys. Chem. Chem. Phys.*, 2016, **18**, 3804–3811.
- 3. S. Grieshammer, J Phys Chem C, 2017, **121**, 15078-15084.