Electronic Supplementary Information for:

Twisted Bodipy Derivative: Intersystem Crossing, Electron Spin Polarization and Application as a Novel Photodynamic Therapy Reagent

Yu Dong, ‡^a Prashant Kumar, ‡^b Partha Maity, ‡^c Ivan Kurganskii,^d Shujing Li,^e Ayhan Elmali,^f Jianzhang Zhao, *^a Daniel Escudero, *^b Huijian Wu, *^e Ahmet Karatay, *^f Omar F. Mohammed *^c and Matvey Fedin *^d

 ^a State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China. E-mail: zhaojzh@dlut.edu.cn
 ^b Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium. Email: Daniel.escudero@kuleuven.be
 ^c Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia. Email: omar.abdelsaboor@kaust.edu.sa
 ^d International Tomography Center, SB RAS Institutskaya Str., 3A, and Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk, Russia. Email: mfedin@tomo.nsc.ru
 ^e School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, P. R. China. Email: wuhj@dlut.edu.cn
 ^f Department of Chemistry, Faculty of Science, and Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100 Beşevler, Ankara, Turkey. Email: Ahmet.Karatay@eng.ankara.edu.tr

‡ These authors contributed equally to this work.

Table of Contents

1.0 UV-Vis Absorption and Fluorescence Spectra	S3–S5
2.0 Singlet Oxygen Quantum Yield	S6
3.0 Electrochemical and Spectroelectrochemistry Data	S7
4.0 Sub-nanosecond Time-Resolved Transient Absorption Spectra	S8
5.0 Nanosecond Time-Resolved Transient Absorption Spectra	S9
6.0 TREPR Spectra of the Triplet State of BDP-1 at Different Delay Times	S10
7.0 DFT Calculation	S11–S12
8.0 Application in Photodynamic Therapy	S13–S14

1.0 UV-Vis Absorption and Fluorescence Spectra.

Fig. S1 Normalized absorption of **BDP-1**, **BDP-2** and **BDP-3** in film (Clear Flex 50[®] film) prepared by evaporating solvent of DCM solution of compounds. 20 °C.

Fig. S2 Normalized absorption of polymer matrix film (Clear Flex 50[®] film) alone prepared by evaporating solvent of DCM solution. 20 °C.

Fig. S3 Fluorescence emission spectra and of (a) **BDP-1** in different solvents. Optically matched solutions were used. A = 0.142, $\lambda_{ex} = 520$ nm. (b) Normalized fluorescence emission spectra of **BDP-1**, **BDP-2** and **BDP-3** in Clear Flex 50[®] film. 20 °C.

Fig. S4 Fluorescence decay curves of **BDP-1** (a) In *n*-hexane, (b) In toluene, (c) In DCM and (d) In ACN. $c = 1.0 \times 10^{-5}$ M, $\lambda_{ex} = 510$ nm. 20 °C.

Fig. S5 Fluorescence decay curves of **BDP-1** in DCM under nitrogen (N₂), oxygen (O₂) and air atmosphere. $c = 1.0 \times 10^{-5}$ M, excited with EPL picosecond pulsed laser ($\lambda_{ex} = 510$ nm). Detected with TCSPC mode. 20 °C.

-		Solvent	$\lambda_{abs}{}^{[a]}\left(\mathcal{E}^{[b]} ight)$	λ _F ^[c]	$\Phi_{F}{}^{[d]}$	$ au_{F}$ ^[e]	$\Phi_{\Delta}{}^{[f]}$	$\Phi_{T}{}^{[g]}$
-	BDP-1	HEX	562 (1.46)	568	0.37 ^[h] /0.34 ^[i]	4.4	0.17 ^[h] /0.24 ^[i]	0.41
		TOL	566 (1.31)	575	0.47 ^[h] /0.43 ^[i]	4.7	$0.26^{[h]}/0.31^{[i]}$	0.41
		DCM	564 (1.21)	572	0.31 ^[h] /0.29 ^[i]	3.6	0.55 ^[h] /0.59 ^[i]	0.56
		ACN	557 (1.13)	568	0.36 ^[h] /0.32 ^[i]	4.7	0.41 ^[h] /0.45 ^[i]	0.39

Table S1 The Photophysical Properties of the BDP-1

[a] $\overline{c} = 1.0 \times 10^{-5}$ M, in nm. [b] Molar absorption coefficient. ε values are in 10^5 M⁻¹ cm⁻¹. [c] Fluorescence emission maxima wavelength, in nm. [d] Absolute fluorescence quantum yield determined by optical integrating sphere, error: ± 0.01 . [e] Fluorescence lifetime, $\lambda_{ex} = 510$ nm, in ns, $c = 1.0 \times 10^{-5}$ M. [f] Singlet oxygen quantum yield (Φ_{Δ}), Ru(bpy)₃ as standard ($\Phi_{\Delta} = 0.57$ in ACN) when excited into the S₂ state. 2,6-diiodobodipy was used as standard ($\Phi_{\Delta} = 0.85$ in toluene) when excited into the S₁ state. Estimated determination error: ± 0.03 . [g] Triplet state quantum yield, 2,6-diiodobodipy as standard ($\Phi_{T} = 0.88$ in toluene) when excited at S₀ \rightarrow S₁ transition. [h] Excited at S₀ \rightarrow S₁ transition. [i] Excited at S₀ \rightarrow S₂ transition.

2.0 Singlet Oxygen Quantum Yield.

Singlet oxygen quantum yields (Φ_{Δ}) were determined by relative method using Eq. S1. 1,3diphenylisobenzofuran (DPBF) was used as ${}^{1}O_{2}$ scavenger.

$$\Phi_{\rm sam} = \Phi_{\rm std} \left(\frac{1 - 10^{-A_{\rm std}}}{1 - 10^{-A_{\rm sam}}} \right) \left(\frac{m_{\rm sam}}{m_{\rm std}} \right) \left(\frac{\eta_{\rm sam}}{\eta_{\rm std}} \right)^2$$
(Eq. S1)

In the equation, "sam" and "std" represent the sample and standard, respectively. Φ , *A*, *m* and η represent as singlet oxygen quantum yield, absorbance at excitation wavelength, the slope of the change of absorbance of DPBF at 414 nm over photo-irradiation time and refractive index of solvent used for measurement.

Fig. S6 Monitoring the ¹O₂ production using UV–Vis absorption changes of the DPBF upon photoirradiation with (a) **BDP-1** and DPBF in DCM, (b) **BDP-2** and DPBF in toluene and (c) DPBF in DCM. Optical matched solution was used, $\lambda_{ex} = 550$ nm, the irradiation time for each data point is 20 s (6 mJ cm⁻²). 20 °C.

3.0 Electrochemical and Spectroelectrochemistry Data.

Fig. S7 Cyclic voltammogram of the **BDP-1**. Ferrocene (Fc) was used as internal reference. In deaerated DCM containing 0.10 M Bu₄N[PF₆] as supporting electrolyte, Ag/AgNO₃ as reference electrode. Scan rates: 50 mV/s. $c = 1.0 \times 10^{-3}$ M, 20 °C.

Fig. S8 Spectroelectrochemistry traces of the UV-Vis absorption spectra observed at controlledpotential. (a) **BDP-1** at -1.17 V and (b) **BDP-1** at +0.95 V. In solution of 0.10 M Bu₄N[PF₆] of DCM. 20 °C.

4.0 Sub-nanosecond Time-Resolved Transient Absorption Spectra.

Fig. S9 Femtosecond transient absorption spectra of **BDP-1**. (a) Transient absorption spectra, (b) Evolution-associated difference spectra (EADS) and (c) Decay traces at selected wavelengths. EADS were obtained by singular value decomposition (SVD) and global fitting (sequential model). $\lambda_{ex} = 475 \text{ nm}, c = 1.0 \times 10^{-5} \text{ M}$ in DCM, 20 °C.

5.0 Nanosecond Time-Resolved Transient Absorption Spectra.

Fig. S10 (a) Nanosecond transient absorption spectra of **BDP-2** in Clear Flex 50 film under N₂ atmosphere. (b) Decay trace at 530 nm. $\lambda_{ex} = 520$ nm, 17.6 µmol/g (**BDP-2**/Clear Flex 50[®]), 20 °C.

Fig. S11 (a) Nanosecond transient absorption spectra of **BDP-3** in Clear Flex 50 film under N₂ atmosphere. (b) Decay trace at 560 nm. $\lambda_{ex} = 550$ nm, 17.6 µmol/g (**BDP-3**/Clear Flex 50[®]), 20 °C.

Fig. S12 The TREPR spectra of **BDP-1** at different delay times after laser flash. (a) Normalized spectra; (b) Original spectra. Recorded by excitation of the frozen solution with 532 nm nanosecond pulsed laser. In toluene/MeTHF (3:1, v/v). 80 K. Integration time window is indicated for each trace.

7.0 DFT Calculation.

Fig. S13 Optimized geometries and the dihedral angles of **BDP-1** (a) S_1 state and (b) T_1 state. DFT and TDDFT computation was performed at B3LYP/6-31G(d) level with Gaussian 09W.

Table S2. X, Y and Z components of the computed SOC matrix elements of BDP-1

Involved excited	X-component	Y-component	Z-component	Total ^a
states	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)
S ₁ -T ₁	0.03	-0.40	0.22	0.45749
S ₁ -T ₂	-0.08	-0.13	0.02	0.15394
S ₁ -T ₃	0.02	1.96	-0.13	1.96441
S_2 - T_1	0.04	-0.42	0.19	0.46271
S ₂ -T ₂	0.03	0.47	-0.15	0.49427
S ₂ -T ₃	0.05	0.66	0.14	0.67654

^{*a*} Formula used to calculate total SOC from its components is $Total = \sqrt{x^2 + y^2 + z^2}$

8.0 Application in Photodynamic Therapy

Fig. S14 Comparison of the cell viability of HeLa cells with pre-treated **BDP-1** with different concentration without light irradiation.

Fig. S15 Detection of intracellular ROS generation in HeLa cells. The cells were irradiation with 559 nm after incubated with 3 μ M **BDP-1** and DCF-DA. The channel of fluorescence image of DCF ($\lambda_{ex} = 488$ nm; $\lambda_{em} = 500-540$ nm) and transmitted light images. Scale bar: 20 μ m.

Fig. S16 Detection of intracellular ROS generation in HeLa cells. The cells were irradiation with 559 nm after incubated with DCF-DA. The channel of fluorescence image of DCF ($\lambda_{ex} = 488$ nm; $\lambda_{em} = 500-540$ nm) and transmitted light images. Scale bar: 20 μ m.