Supporting Information for

A new perspective for evaluating photoelectric performance of

organic-inorganic hybrid perovskites based on DFT calculations of

excited states

Zhengyang Gao^a, Shengyi Chen^a, Yang Bai^a, Min Wang^a, Xiaoshuo Liu^{a,b}, Weijie Yang^{*a}, Wei Li^c, Xunlei Ding^{*c}, Jianxi Yao^{*d,e}

a Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China

b Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China

c Institute of Clusters and Low Dimensional Nanomaterials, School of Mathematics and Physics, North China Electric Power University, Beijing, People's Republic of China

d State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China.

e Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing 102206, China.

Table S1 Calculation results for the electron-hole distribution index from the ground state to the first singlet state, D index means the centroid distance between holes and electrons. *Sr* index means the overlap between holes and electrons. *T* index measures the degree of separation of holes and electrons. *Ec* and *Es* are exciton binding energy and excited energy respectively. *Q* is the amount of net charge transfer. *G* and *S* are the HOMO-LUMO gap and score index, respectively.

Clusters	<i>D</i> (Å)	<i>Sr</i> (a.u.)	t (Å)	<i>Ec</i> (eV)	<i>Es</i> (eV)	<i>Q</i> (e)	<i>G</i> (eV)	S
FAGeCl₃	0.12	0.71	-1.05	6.61	5.59	0.14	6.76	0.20
FAGeBr₃ FAGel₀	0.26	0.69	-1.15	5.90 5.48	5.25 4.08	0.15	0.05 6.30	0.33
FASnCl ₃	0.37	0.70	-0.88	6.21	5.43	0.16	7.12	0.31
FASnBr₃	0.71	0.60	-0.91	5.21	4.86	0.33	6.94	0.75
FASNI3 FAPhCla	0.45	0.64	-1.11	5.20	4.28	0.38	6.52 7.98	0.78
FAPbBr ₃	0.65	0.58	-0.79	5.29	5.19	0.60	7.57	0.82
FAPbl ₃	0.93	0.61	-0.56	4.93	4.44	0.57	6.77	1.22
JAGeCl₃ 1∆GeBr₂	0.17	0.70	-1.03	6.73 6.17	5.52 4.93	0.13	6.85 6.50	0.20
JAGel₃	0.68	0.62	-0.86	5.23	4.03	0.41	6.08	1.00
JASnCl₃	1.01	0.60	-0.84	5.54	5.31	0.42	7.15	0.38
JASIIDI₃ JASnl₃	0.25	0.70	-1.29	5.12	5.29 4.20	0.32	6.31	0.42
JAPbCl ₃	0.33	0.55	-0.97	5.63	5.63	0.67	7.97	0.59
JAPbBr₃	0.47	0.54	-0.99	5.27	5.12	0.66	7.43	0.79
	0.82	0.58	-0.70	4.95	4.42 5.78	0.80	8.30	0.16
MAGeBr ₃	0.22	0.69	-1.10	6.08	5.20	0.20	7.84	0.27
MAGel₃ MASpCl	0.02	0.70	-1.35	5.56	4.21	0.22	6.68	0.44
MAShCi ³	0.33	0.73	-1.00	5.88	5.11	0.37	7.76	0.32
MASnI₃	0.15	0.70	-1.36	5.28	4.50	0.29	6.88	0.53
MAPbCl₃ MAPbBr₂	0.87	0.67	-0.41	5.78	6.01 5.49	0.61	8.69	0.66
MAPbl ₃	1.18	0.42	0.07	4.88	4.57	0.00	6.95	1.83
EAGeCl₃	0.12	0.71	-1.01	6.59	5.50	0.38	7.80	0.24
EAGeBr₃ FAGel₀	0.30	0.67	-0.96 -1.04	6.09 5.51	4.93	0.13	7.57 6.55	0.32
EASnCl ₃	0.31	0.69	-0.96	6.24	5.28	0.16	8.02	0.29
EASnBr₃	0.42	0.69	-0.90	5.82	4.88	0.21	7.55	0.47
EASIII3 EAPbCl3	0.52	0.66	-0.94 -0.40	5.28 5.81	4.20	0.21	6.69 8.43	0.72
EAPbBr ₃	1.06	0.59	-0.36	5.42	5.15	0.39	7.67	0.99
EAPbl₃ BAGoCl	1.21	0.59	-0.28	4.97	4.35	0.41	6.71	1.41
BAGeBr₃	0.11	0.67	-0.97	6.13	5.16	0.15	7.85	0.15
BAGel₃	0.23	0.70	-1.28	5.53	4.24	0.13	6.73	0.45
BASNCI₃ BASnBr₃	0.27	0.72	-1.10 -0.89	6.29 5.86	5.49 5.05	0.16	8.20 7.72	0.25
BASnl₃	0.56	0.66	-0.95	5.35	4.47	0.22	6.95	0.69
BAPbCl₃ BABbBr	0.82	0.66	-0.53	5.82	6.00 5.44	0.37	8.68	0.60
BAPbl ₃	1.35	0.03	0.12	4.85	4.63	0.41	7.00	1.80
DAGeCl ₃	0.27	0.69	-1.14	6.19	5.51	0.16	7.17	0.22
DAGeBr₃ DAGel₀	0.38	0.65	-0.95 -1.19	5.96 5.44	4.95 4.08	0.15	7.07 6.55	0.37
DASnCl ₃	0.25	0.69	-1.15	6.04	5.30	0.17	7.49	0.29
DASnBr₃	0.36	0.68	-1.05	5.69	4.91	0.20	7.32	0.45
DAPbCl ₃	0.40	0.59	-0.58	5.62	5.75	0.20	8.29	0.70
DAPbBr₃	0.92	0.59	-0.56	5.28	5.17	0.39	7.66	0.90
DAPDI₃ KBGeCl₂	0.12	0.61	-0.58 -1.10	4.91	4.40 5.68	0.41	6.73 8.16	1.20
KBGeBr ₃	0.38	0.66	-0.96	6.00	5.15	0.14	7.80	0.28
KBGel₃	0.12	0.70	-1.33	5.49	4.19	0.14	6.67	0.39
KBSnBr₃	0.30	0.70	-0.99	5.74	5.03	0.10	7.67	0.22
KBSnl₃	0.55	0.66	-0.84	5.27	4.46	0.22	6.87	0.67
KBPbCl₃ KBPbBr₀	0.86	0.63	-0.47	5.72 5.37	5.85 5.32	0.37 0.20	8.52 7 91	0.56
KBPbl₃	1.32	0.44	-0.23	4.83	4.60	0.61	6.94	1.57
KCGeCl₃	0.09	0.72	-1.17	6.46	5.58	0.13	7.90	0.04
KCGeBr₃ KCGel₀	0.39 0.14	0.66 0.70	-0.96 -1 31	6.03 5.48	5.14 4 19	0.15 0.14	7.79 6.66	0.22
KCSnCl ₃	0.28	0.70	-1.04	6.12	5.36	0.16	8.07	0.17
KCSnBr₃	0.40	0.70	-0.99	5.74	5.03	0.21	7.67	0.32
KCSnl₃ KCPbCl₀	0.52	0.65 0.63	-0.87 -0.47	5.28 5.71	4.46 5.84	0.21	ხ.87 8.51	0.59 0.49
KCPbBr ₃	1.01	0.60	-0.42	5.33	5.31	0.39	7.80	0.76

KCPbl₃	1.15	0.62	-0.43	4.94	4.49	0.41	6.82	1.12
RAGeCl₃	0.18	0.73	-1.11	6.27	5.62	0.15	6.91	0.19
RAGeBr ₃	0.20	0.69	-1.15	5.97	5.00	0.16	6.77	0.31
RAGel	0.17	0.67	-1.30	5.37	4.06	0.18	6.38	0.55
RASnCl₃	0.28	0.70	-1.03	6.11	5.41	0.16	7.24	0.29
RASINBr ₃	0.19	0.68	-1.43	5.42	4.95	0.32	7.03	0.46
	0.20	0.00	-1.30	5.17	4.30	0.22	0.50	0.61
	0.48	0.02	-1.01	5.00	5.78 5.19	0.40	8.08	0.49
DADDI3	0.40	0.00	-1.09	1 03	J.10 4 40	0.43	6.70	0.07
	0.74	0.02	-0.09	651	5.68	0.42	8.22	0.11
TAGeBr ₂	0.37	0.66	-0.97	5 98	5.00	0.12	7 79	0.11
TAGel	0.12	0.00	-1.33	5 4 9	4 20	013	6.67	0.00
TASnCl ₃	0.30	0.71	-1.09	6.17	5.45	0.16	8.15	0.23
TASnBr ₃	0.40	0.71	-1.06	5.75	5.05	0.20	7.69	0.38
TASnl₃	0.47	0.66	-0.94	5.24	4.47	0.19	6.86	0.63
TAPbCl₃	0.84	0.65	-0.56	5.70	5.94	0.37	8.59	0.55
TAPbBr₃	0.93	0.64	-0.57	5.37	5.42	0.40	7.92	0.75
TAPbl₃	1.24	0.44	-0.29	4.81	4.58	0.60	6.93	1.57
UAGeCl₃	0.09	0.73	-1.22	6.47	5.71	0.13	8.44	0.11
UAGeBr₃	0.22	0.73	-1.12	5.98	5.21	0.18	7.88	0.24
UAGel ₃	0.07	0.69	-1.31	5.50	4.24	0.13	6.70	0.40
	0.33	0.71	-1.03	6.18	5.46	0.16	8.14	0.24
	0.42	0.72	-1.02	5.74	5.00	0.21	7.09	0.39
	0.47	0.73	-1.04	5.20	4.50	0.23	0.91	0.59
	0.92	0.07	-0.40	5.36	5.92	0.39	7 98	0.02
	1 28	0.03	-0.21	4 80	4 62	0.40	6 97	1.63
.	±0	0.10	0.21			0.01	0.01	±.00

Table S2 Effective radii of molecular cations and anions and the tolerance factor (TF) of perovskites. Ionic radii of FA, MA, EA, BA, DA, and RA were used according to ref. 1. Ionic radii of TA and UA were used according to ref. 2. Ionic radii of JA, KB, KC was estimated because the large A makes the three-dimensional structure of the perovskite change to the two-dimensional structure⁴⁻⁶. Ionic radii of B and X were used according to ref. 3. TFs in the range of 0.78-1.05 have been bolded.

					0 1 ·				T C
Clusters	r_A (Å)	r_B (Å)	r_X (Å)	TF	Clusters	r_A (A)	r_B (A)	r_X (Å)	TF
FAGeCl₃	2.53	1.2	1.02	1.13	DASnBr₃	2.92	1.39	1.2	1.12
FAGeBr₃	2.53	1.2	1.2	1.10	DASnl₃	2.92	1.39	1.39	1.10
FAGel₃	2.53	1.2	1.39	1.07	DAPbCl₃	2.92	1.46	1.02	1.12
FASnCl₃	2.53	1.39	1.02	1.04	DAPbBr₃	2.92	1.46	1.2	1.10
FASnBr₃	2.53	1.39	1.2	1.02	DAPbl₃	2.92	1.46	1.39	1.07
FASnl₃	2.53	1.39	1.39	1.00	KBGeCl₃	3.31	1.2	1.02	1.38
FAPbCl₃	2.53	1.46	1.02	1.01	KBGeBr₃	3.31	1.2	1.2	1.33
FAPbBr₃	2.53	1.46	1.2	0.99	KBGel₃	3.31	1.2	1.39	1.28
FAPbl₃	2.53	1.46	1.39	0.97	KBSnCl₃	3.31	1.39	1.02	1.27
JAGeCl₃	2.73	1.2	1.02	1.19	KBSnBr₃	3.31	1.39	1.2	1.23
JAGeBr₃	2.73	1.2	1.2	1.16	KBSnl₃	3.31	1.39	1.39	1.20
JAGel₃	2.73	1.2	1.39	1.12	KBPbCl₃	3.31	1.46	1.02	1.23
JASnCl₃	2.73	1.39	1.02	1.10	KBPbBr₃	3.31	1.46	1.2	1.20
JASnBr₃	2.73	1.39	1.2	1.07	KBPbl₃	3.31	1.46	1.39	1.17
JASnl₃	2.73	1.39	1.39	1.05	KCGeCl₃	3.88	1.2	1.02	1.56
JAPbCl₃	2.73	1.46	1.02	1.07	KCGeBr₃	3.88	1.2	1.2	1.50
JAPbBr₃	2.73	1.46	1.2	1.04	KCGel₃	3.88	1.2	1.39	1.44
JAPbl₃	2.73	1.46	1.39	1.02	KCSnCl₃	3.88	1.39	1.02	1.44
MAGeCl₃	2.17	1.2	1.02	1.02	KCSnBr₃	3.88	1.39	1.2	1.39
MAGeBr₃	2.17	1.2	1.2	0.99	KCSnl₃	3.88	1.39	1.39	1.34
MAGel₃	2.17	1.2	1.39	0.97	KCPbCl₃	3.88	1.46	1.02	1.40
MASnCl₃	2.17	1.39	1.02	0.94	KCPbBr₃	3.88	1.46	1.2	1.35
MASnBr₃	2.17	1.39	1.2	0.92	KCPbl₃	3.88	1.46	1.39	1.31
MASnl₃	2.17	1.39	1.39	0.91	RAGeCl ₃	2.58	1.2	1.02	1.15
MAPbCl₃	2.17	1.46	1.02	0.91	RAGeBr ₃	2.58	1.2	1.2	1.11
MAPbBr₃	2.17	1.46	1.2	0.90	RAGel₃	2.58	1.2	1.39	1.08
MAPbl₃	2.17	1.46	1.39	0.88	RASnCl₃	2.58	1.39	1.02	1.06
EAGeCl ₃	2.74	1.2	1.02	1.20	RASnBr₃	2.58	1.39	1.2	1.03
EAGeBr₃	2.74	1.2	1.2	1.16	RASnl₃	2.58	1.39	1.39	1.01
EAGel₃	2.74	1.2	1.39	1.13	RAPbCl₃	2.58	1.46	1.02	1.03
EASnCl₃	2.74	1.39	1.02	1.10	RAPbBr₃	2.58	1.46	1.2	1.00
EASnBr₃	2.74	1.39	1.2	1.08	RAPbl₃	2.58	1.46	1.39	0.98
EASnl₃	2.74	1.39	1.39	1.05	TAGeCl₃	3.07	1.2	1.02	1.30
EAPbCl₃	2.74	1.46	1.02	1.07	TAGeBr₃	3.07	1.2	1.2	1.26
EAPbBr₃	2.74	1.46	1.2	1.05	TAGel₃	3.07	1.2	1.39	1.22
EAPbl₃	2.74	1.46	1.39	1.02	TASnCl₃	3.07	1.39	1.02	1.20
BAGeCl₃	2.16	1.2	1.02	1.01	TASnBr₃	3.07	1.39	1.2	1.17
BAGeBr₃	2.16	1.2	1.2	0.99	TASnl₃	3.07	1.39	1.39	1.13
BAGel₃	2.16	1.2	1.39	0.97	TAPbCl₃	3.07	1.46	1.02	1.17
BASnCl₃	2.16	1.39	1.02	0.93	TAPbBr₃	3.07	1.46	1.2	1.14
BASnBr₃	2.16	1.39	1.2	0.92	TAPbl₃	3.07	1.46	1.39	1.11
BASnl₃	2.16	1.39	1.39	0.90	UAGeCl₃	3.04	1.2	1.02	1.29
BAPbCl ₃	2.16	1.46	1.02	0.91	UAGeBr₃	3.04	1.2	1.2	1.25
BAPbBr₃	2.16	1.46	1.2	0.89	UAGel₃	3.04	1.2	1.39	1.21
BAPbl₃	2.16	1.46	1.39	0.88	UASnCl₃	3.04	1.39	1.02	1.19
DAGeCl₃	2.92	1.2	1.02	1.25	UASnBr₃	3.04	1.39	1.2	1.16
DAGeBr₃	2.92	1.2	1.2	1.21	UASnl₃	3.04	1.39	1.39	1.13
DAGel₃	2.92	1.2	1.39	1.18	UAPbCl₃	3.04	1.46	1.02	1.16
DASnCl₃	2.92	1.39	1.02	1.16	UAPbBr₃	3.04	1.46	1.2	1.13
DASnBr₃	2.92	1.39	1.2	1.12	UAPbl₃	3.04	1.46	1.39	1.10

Table S3 The binding energy table which is calculated by the formula $\Delta E = E_{ABX_3} - E_A - E_{BX_3}$. M06-2X-D3, M06-2X, B3LYP-D3, and B3LYP are the testing functionals. Error is the difference between the binding energy calculated by other functionals and M06-2X-D3. (all energies are in eV) Time is job cpu time which is exported by Gaussian 09.

Cluster	Ν	106-2X-D	3	M06-2X			
Cluster	Binding energy	Error	Time (hours)	Binding energy	Error	Time (hours)	
MAPbF ₃	5.886	0.000	0.640	5.881	0.005	0.628	
MAPbCl ₃	4.989	0.000	0.602	4.982	0.007	0.559	
MAPbBr ₃	4.770	0.000	0.871	4.763	0.007	0.992	
MAPbl₃	4.524	0.000	1.003	4.518	0.007	1.064	
Cluster		33LYP-D3			B3LYP		
Cluster	l Binding energy	33LYP-D3 Error	Time (hours)	Binding energy	B3LYP Error	Time (hours)	
Cluster MAPbF ₃	Binding energy 5.866	B3LYP-D3 Error 0.020	Time (hours) 0.444	Binding energy	B3LYP Error 0.201	Time (hours) 0.402	
Cluster MAPbF₃ MAPbCl₃	Binding energy 5.866 5.100	B3LYP-D3 Error 0.020 0.112	Time (hours) 0.444 0.381	Binding energy 5.684 4.819	B3LYP Error 0.201 0.169	Time (hours) 0.402 0.373	
Cluster MAPbF₃ MAPbCl₃ MAPbBr₃	Binding energy 5.866 5.100 4.888	B33LYP-D3 Error 0.020 0.112 0.118	Time (hours) 0.444 0.381 0.710	Binding energy 5.684 4.819 4.579	B3LYP Error 0.201 0.169 0.191	Time (hours) 0.402 0.373 0.606	

Figure S1. a) Optimized structures of MABX₃ (B = Ge²⁺, Sn²⁺, Pb²⁺, and X = Cl⁻, Br⁻, l⁻). b) The electron-hole distribution chart. Green and blue isosurfaces represent the distribution of electrons and holes, respectively. c) The s(r) distribution charts. The yellow isosurface represents the overlap of electrons and holes. The isosurfaces were uniformly selected as 0.002, respectively.

Figure S2. a) Optimized structures of FABX₃ (B = Ge²⁺, Sn²⁺, Pb²⁺, and X = Cl⁻, Br⁻, l⁻). b) The electron-hole distribution chart. Green and blue isosurfaces represent the distribution of electrons and holes, respectively. c) The s(r) distribution charts. The yellow isosurface represents the overlap of electrons and holes. The isosurfaces were uniformly selected as 0.002, respectively.

Figure S3. a) Optimized structures of EABX₃ (B = Ge²⁺, Sn²⁺, Pb²⁺, and X = Cl⁻, Br⁻, l⁻). b) The electron-hole distribution chart. Green and blue isosurfaces represent the distribution of electrons and holes, respectively. c) The s(r) distribution charts. The yellow isosurface represents the overlap of electrons and holes. The isosurfaces were uniformly selected as 0.002, respectively.

Figure S4. a) Optimized structures of JABX₃ (B = Ge²⁺, Sn²⁺, Pb²⁺, and X = Cl⁻, Br⁻, l⁻). b) The electron-hole distribution chart. Green and blue isosurfaces represent the distribution of electrons and holes, respectively. c) The s(r) distribution charts. The yellow isosurface represents the overlap of electrons and holes. The isosurfaces were uniformly selected as 0.002, respectively.

Figure S5. a) Optimized structures of BABX₃ (B = Ge²⁺, Sn²⁺, Pb²⁺, and X = Cl⁻, Br⁻, l⁻). b) The electron-hole distribution chart. Green and blue isosurfaces represent the distribution of electrons and holes, respectively. c) The s(r) distribution charts. The yellow isosurface represents the overlap of electrons and holes. The isosurfaces were uniformly selected as 0.002, respectively.

Figure S6. a) Optimized structures of DABX₃ (B = Ge²⁺, Sn²⁺, Pb²⁺, and X = Cl⁻, Br⁻, l⁻). b) The electron-hole distribution chart. Green and blue isosurfaces represent the distribution of electrons and holes, respectively. c) The s(r) distribution charts. The yellow isosurface represents the overlap of electrons and holes. The isosurfaces were uniformly selected as 0.002, respectively.

Figure S7. a) Optimized structures of KBBX₃ (B = Ge²⁺, Sn²⁺, Pb²⁺, and X = Cl⁻, Br⁻, l⁻). b) The electron-hole distribution chart. Green and blue isosurfaces represent the distribution of electrons and holes, respectively. c) The s(r) distribution charts. The yellow isosurface represents the overlap of electrons and holes. The isosurfaces were uniformly selected as 0.002, respectively.

Figure S8. a) Optimized structures of KCBX₃ (B = Ge²⁺, Sn²⁺, Pb²⁺, and X = Cl⁻, Br⁻, l⁻). b) The electron-hole distribution chart. Green and blue isosurfaces represent the distribution of electrons and holes, respectively. c) The s(r) distribution charts. The yellow isosurface represents the overlap of electrons and holes. The isosurfaces were uniformly selected as 0.002, respectively.

Figure S9. a) Optimized structures of RABX₃ (B = Ge²⁺, Sn²⁺, Pb²⁺, and X = Cl⁻, Br⁻, l⁻). b) The electron-hole distribution chart. Green and blue isosurfaces represent the distribution of electrons and holes, respectively. c) The s(r) distribution charts. The yellow isosurface represents the overlap of electrons and holes. The isosurfaces were uniformly selected as 0.002, respectively.

Figure S10. a) Optimized structures of TABX₃ (B = Ge²⁺, Sn²⁺, Pb²⁺, and X = Cl⁻, Br⁻, l⁻). b) The electron-hole distribution chart. Green and blue isosurfaces represent the distribution of electrons and holes, respectively. c) The s(r) distribution charts. The yellow isosurface represents the overlap of electrons and holes. The isosurfaces were uniformly selected as 0.002, respectively.

Figure S11. a) Optimized structures of UABX₃ (B = Ge²⁺, Sn²⁺, Pb²⁺, and X = Cl⁻, Br⁻, l⁻). b) The electron-hole distribution chart. Green and blue isosurfaces represent the distribution of electrons and holes, respectively. c) The *s*(r) distribution charts. The yellow isosurface represents the overlap of electrons and holes. The isosurfaces were uniformly selected as 0.002, respectively.

Figure S12. Radar chart of the normalized electronic excitation characteristic index. \overline{D} index means the centroid distance between holes and electrons. \overline{Sr} index means the separation between holes and electrons. \overline{TF} means the normalized tolerance factor. The Q index represents the net charge transfer. \overline{Ec} and \overline{Es} respectively represent the relative magnitude of exciton binding energy and excitation energy. \overline{t} index measures the degree of separation of holes and electrons.

Figure S13. The DFT-M06-2X calculated HOMO-LUMO gaps (green) of the molecules compared to band gaps (blue) calculated by the DFT-GGA-GW with SOC and the experimental values (red).

Figure S14 Two-dimensional plane fitting diagram between exciton binding energy, HOMO-LUMO gap, and excitation energy. *Es* means the excited energy. *Ec* means the exciton binding energy and *G* represents the HOMO-LUMO gap.

Notes and references

- 1. A. M. Glazer, Acta Crystallogr. Sect. B, 1972, 28, 3384–3392.
- 2. Markus B., Thorsten K., Michael W., Dalton Trans., 2017, 46, 3500-3509.
- 3. Shannon R D., Acta Crystallogr. Sect. A, 1976, **32**, 751-767.
- 4. A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, Md. K. Nazeeruddin, M. Grätzel, F. De Angelis, *Nano lett.*, 2014, **14**, 3608-3616.
- 5. T. J. Jacobsson, M. Pazoki, A. Hagfeldt, T. Edvinsson, J. Phys. Chem. C, 2015, **119**, 25673-25683.
- 6. I. E. Collings, J. A. Hill, A. B.Cairns, R. I. Cooper, A. L. Thompson, J. E. Parker, C. C. Tang, A. L. Goodwin, *Dalton Trans.*, 2016, **45**, 4169-4178.