Supporting information on:

Dispersion forces in chirality recognition - a density functional and wave function theory study of diols

Xaiza Aniban, $^{\ddagger a}$ Beppo Hartwig, $^{\ddagger a}$ Axel Wuttke, a Ricardo A. Mata a*

a Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany. E-mail: rmata@gwdg.de ‡ These authors contributed equally to this work.

Contents

1	DFT data	1
2	WFT data	4
3	Geometry analysis data 3.1 Intermolecular hydrogen bond (Å), EDO 3.2 Intermolecular hydrogen bond (Å), CHexDO 3.3 Intermolecular hydrogen bond (Å), Pinacol 3.4 Generation of density plots in Figure 4 of the main text.	5 5 6 7 8
4	Structures	9
Re	eferences	10

1 DFT data

Fig. S1: Overview of the average energy difference relative to the Dunning aVQZ (aug-cc-pVQZ) basis set depending on the fraction of the computational time of aVQZ and each tested basis set. The fully augmented Dunning basis sets (aug-cc-pVXZ) as well as the non augmented variants (cc-pVXZ) were tested^[1,2]. Furthermore the def2-XZVP Ahlrichs^[3] family of basis sets were tested as well as the minamlly augmented variants of Zheng et al.^[4] and the property optimized heavily augmented variants of Rappoport et al.^[5]. Additionally the augmented (aug-pcseg-X) and non augmented (pcseg-X) Jensen basis sets were tested^[6]. The aug-pcseg-3 calculations did not converge. All calculations were made for a total of 8 different ethanediol dimers and then averaged. For comparable timings each calculation was done on the same node.

Fig. S2: Overview of the DFT results with (b)) and without D3(BJ,abc) (a)) for cyclohexanediol, ethanediol and pinacol. The energies given are always relative to the minimum energy conformer and zero point corrected. Grey squares indicate unstable conformers.

Fig. S3: Identical analysis as was done in Fig. 9 of the main text for ethanediol a), cyclohexanediol b) and pinacolc) at the B3LYP level of computation.

Fig. S4: Comparison of the LMP2-d and SCS-LMP2-d het-hom gap with the corresponding results purely based on the dispersion energy (LMP2-E and SCS-LMP2-E). The dispersion energy gap can also be inferred from Fig. 12 of the main text for SCS-LMP2 and figure S5 for LMP2.

Fig. S5: Energy fragmentation of the dispersion energy at the LMP2-d level of computation for ethanediol (a)), cyclohexanediol (b)) and pincaol (c)). A zero energy value indicates that a conformer either converges to a different one or exhibits an imaginary frequency. The performed analysis is analogous to that of Fig. 12 of the main text.

3 Geometry analysis data

3.1 Intermolecular hydrogen bond (Å), EDO

Molecular System	with disp	persion		without dispersion				
het2"	1.983 1.	.983		2.133	2.133			
$het3_b$ '	2.188 2.	.031 1.892		2.532	2.112	2.000		
het3	1.905 1.	.998 1.899		2.045	2.152	2.063		
het3'	1.928 1.	.976 1.920		2.085	2.131	2.100		
het4	1.959 1.	.959 1.959	1.959	2.111	2.111	2.111	2.111	
hom2	1.926 1.	.973		2.081	2.145			
hom3a	1.841 1.	.972 2.065		1.956	2.215	2.244		
hom3a'	1.822 1.	.961 2.021		2.034	3.390	2.046		
$hom 3_b$ '	2.145 1.	.983 1.886		2.491	2.083	2.006		
hom3	1.847 1.	.980 1.959		1.956	2.154	2.136		
hom3'	1.876 1.	.971 1.961		2.004	2.159	2.135		

Tab. S1: Intermolecular H-bonding optimized at LMP2/aug-cc-pVTZ,H=cc-pVTZ.

Molecular System	blecular System with dispersion					without dispersion				
het2"	1.939 1.939			1.980	1.980					
$het 3_b$ '	2.141 1.988	1.876		2.203	2.046	1.915				
het3	1.881 1.973	1.865		1.925	2.008	1.911				
het3'	1.885 1.943	1.877		1.913	2.000	1.935				
het4	1.951 1.951	1.951	1.951	1.997	1.997	1.997	1.997			
hom 2"	1.898 1.932			1.957	1.977					
hom3a	1.810 1.926	2.018		1.832	1.998	2.091				
hom 3a'	1.792 1.916	2.001		1.811	2.018	2.044				
$hom 3_b$ '	2.062 1.956	1.864		2.114	2.024	1.909				
hom3	1.828 1.940	1.916		1.852	2.015	1.987				
hom3'	1.841 1.935	1.921		1.870	2.019	1.990				

Tab. S2: Intermolecular H-bonding optimized at B3LYP/aug-cc-pVTZ,H=cc-pVTZ.

Tab. S3: Intermolecular H-bonding optimized at SCS-LMP2/aug-cc-pVTZ, H=cc-pVTZ.

Molecular System	with di	spersio	n		withou	ut disper	rsion	
het2"	2.052	2.052			2.178	2.178		
$het3_b$ '	2.255	2.083	1.944		2.510	2.152	2.030	
het3	1.968	2.059	1.964		2.079	2.181	2.096	
het3'	1.997	2.038	1.992		2.119	2.161	2.133	
het4	2.024	2.024	2.024	2.024	2.144	2.144	2.144	2.144
hom 2"	1.992	2.051			2.116	2.196		
hom3a	1.897	2.051	2.140		1.987	2.250	2.288	
hom3a'	1.866	2.075	2.102		2.063	3.474	2.073	
$hom 3_b$ '	2.232	2.031	1.937		2.499	2.112	2.035	
hom3	1.900	2.044	2.026		1.986	2.183	2.169	
hom3'	1.936	2.039	2.025		2.035	2.188	2.166	

3.2 Intermolecular hydrogen bond (Å), CHexDO

Tab.	S4:	Inte	ermol	lecular	H-b	ondin	g opt	imized	at	LMP2/	aug	g-co	-pV	ΥTΖ,Ι	H=c	c-pV	ΤZ
7.0	1	1	0		• . 1	1.	•			• .	1		•	•			

Molecular System	with dispersi	with dispersion				without dispersion				
het2"	2.002 2.002			2.175	2.175					
$het3_b$ '	2.176 2.002	1.873		2.378	2.131	2.007				
het3	1.910 1.988	1.898		2.089	2.139	2.077				
het3'	1.960 1.956	1.921		2.140	2.122	2.106				
het4	1.939 1.939	1.939	1.939	2.099	2.099	2.099	2.099			
hom 2"	2.013 1.947			2.196	2.142					
hom3a	1.869 1.907	2.065		2.011	2.203	2.301				
$hom3_b$ '	2.174 1.957	1.880		2.415	2.087	2.024				
hom3	1.866 1.952	1.942		1.987	2.153	2.159				
hom3'	1.923 1.959	1.948		2.055	2.172	2.173				

Molecular System	with dis	persio	n		withou	it dispe	rsion	-
het2"	1.959 1	1.959			2.007	2.007		
$het3_b$ '	2.137 1	1.961	1.853		2.175	2.036	1.908	
het3	1.877 1	1.950	1.849		1.921	2.005	1.926	
het3'	1.912 1	1.922	1.868		1.947	1.986	1.939	
het4	1.928 1	1.928	1.928	1.928	1.988	1.988	1.988	1.988
$\mathrm{hom}2$ "	1.967 1	1.915			2.015	2.002		
hom3a	1.830 1	1.930	2.005		1.851	2.010	2.079	
$hom3_b$ '	2.102 1	1.925	1.850		2.124	2.007	1.905	
hom3	1.834 1	1.913	1.896		1.860	2.009	1.993	
hom3'	1.860 1	1.917	1.907		1.898	2.017	2.003	

Tab. S5: Intermolecular H-bonding optimized at B3LYP/aug-cc-pVTZ,H=cc-pVTZ.

Tab. S6: Intermolecular H-bonding optimized at SCS-LMP2/aug-cc-pVTZ, H=cc-pVTZ.

Molecular System	with di	vith dispersion without dispersion					rsion	
het2"	2.071	2.071			2.215	2.215		
$het3_b$ '	2.232	2.060	1.928		2.386	2.166	2.035	
het3	1.976	2.050	1.965		2.120	2.167	2.109	
het3'	2.031	2.019	1.993		2.171	2.150	2.138	
het4	2.005	2.005	2.005	2.005	2.132	2.132	2.132	2.132
hom2"	2.091	2.015			2.248	2.174		
hom3a	1.935	2.046	2.142		2.045	2.229	2.344	
$hom3_b$ '	2.257	2.007	1.934		2.443	2.113	2.052	
hom3	1.916	2.020	2.016		2.014	2.182	2.192	
hom3'	1.985	2.028	2.019		2.085	2.197	2.204	

3.3 Intermolecular hydrogen bond (Å), Pinacol

Tab. S7: Intermolecular H-bonding optimized at LMP2/aug-cc-pVTZ, H=cc-pVTZ.

Molecular System	with d	ispersio	n		without dispersion				
het2"	1.982	1.982			2.394	2.394			
$het3_b'$	2.192	2.069	1.883		2.361	2.298	2.081		
het3'	1.975	1.980	1.995		2.223	2.207	2.256		
het4	1.963	1.963	1.963	1.963	2.185	2.185	2.185		
$hom3_b$ '	1.906	2.099	2.090		2.193	2.306	2.313		
hom4	1.887	1.887	2.343	2.343	2.091	2.091	2.733	2.733	

Tab. S8: Intermolecular H-bonding optimized at B3LYP/aug-cc-pVTZ,H=cc-pVTZ.

Molecular System	with d	with dispersion without dispersion						
het2"	1.965	1.964			2.066	2.066		
$het3_b$ '	2.173	2.014	1.853		2.226	2.138	1.937	
het3'	1.909	1.948	1.923		1.999	2.053	2.055	
het4	1.950	1.950	1.950	1.950	2.036	2.036	2.036	2.036
$hom3_b$ '	1.916	1.986	2.094		2.014	2.055	2.234	
hom4	1.864	1.878	2.462	2.181	1.966	1.975	2.788	2.359

5. 55. Intermolecular if bolianing optimized at 505 Livit 2/ aug ce p (12,11-ce p									
Molecular System	with d	lispersio	n		without dispersion				
het2"	2.054	2.054			2.430	2.430			
$het3_b$ '	2.232	2.144	1.948		2.364	2.331	2.109		
het3'	2.056	2.048	2.075		2.243	2.235	2.277		
het4	2.035	2.035	2.035	2.035	2.212	2.212	2.212	2.212	
$hom 3_b$ '	2.029	2.155	2.159		2.220	2.322	2.335		
hom4	1.953	1.953	2.473	2.475	2.113	2.113	2.758	2.757	

Tab. S9: Intermolecular H-bonding optimized at SCS-LMP2/aug-cc-pVTZ, H=cc-pVTZ.

3.4 Generation of density plots in Figure 4 of the main text.

To illustrate how the intermolecular O–H bond distance is affected once dispersion contributions are neglected, a kernel density estimate (KDE) plot was employed. This allows a nice visualization of the distribution of the O–H values we have and is analogous to a histogram. The data in KDE are represented using a continuous probability density curve in one or more dimensions.

Since the values of the O–H bond distances in the previous tables are within 3 decimal places, the bin width chosen to represent the data was 0.001. This permits each value to be represented in each bin, so higher frequency indicated in the plots are representatives of several repeated O–H bond distances. In this section, the analogous histogram is reflected so as to show how the data looks like before employing the continuous probability density curve via KDE.

Fig. S6: Histogram counterpart of Figure 4 of the main text.

Structures

Fig. S7: Comparison of the more orthogonal arrangement of the C-C backbone of hom3 and the more parallel one of hom3a.

References

- T. H. Dunning, "Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen", J. Chem. Phys. 1989, 90, 1007–1023.
- [2] R. A. Kendall, T. H. Dunning, R. J. Harrison, "Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions", J. Chem. Phys. 1992, 96, 6796–6806.
- [3] F. Weigend, R. Ahlrichs, "Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy", *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297.
- [4] J. Zheng, X. Xu, D. G. Truhlar, "Minimally augmented Karlsruhe basis sets", Theor. Chem. Acc. 2011, 128, 295–305.
- [5] D. Rappoport, F. Furche, "Property-optimized Gaussian basis sets for molecular response calculations", J. Chem. Phys. 2010, 133, 134105.
- [6] F. Jensen, "Unifying General and Segmented Contracted Basis Sets. Segmented Polarization Consistent Basis Sets", J. Chem. Theory Comput. 2014, 10, 1074–1085.