Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2021

Supplementary Information

Silver nanoparticle-decorated titanium dioxide nanowire systems via bioinspired poly(L-DOPA) thin film as surface-enhanced Raman spectroscopy (SERS) platform, and photocatalyst

Hayrunnisa Mazlumoglu^a and Mehmet Yilmaz^{a,b,c*}

^aDepartment of Chemical Engineering, Ataturk University, 25240 Erzurum, Turkey ^bEast Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, 25240 Erzurum, Turkey ^cDepartment of Nanoscience and Nanoengineering, Ataturk University, 25240 Erzurum, Turkey

*Correspondence: MY, nano.yilmaz@gmail.com

Figure S1. Representative TEM images of TiO_2 NWs (a) and $TiO_2@PLDOPA$ systems (b) at different magnifications.

Figure S2. Histogram of PLDOPA thickness onto the TiO_2 NWs. At least 100 measurements were collected from the random sites of different TiO_2 @PLDOPA NPs.

Figure S3. Histograms of silver nanostructures onto the TiO_2 @PLDOPA NPs for a different amount of silver. (a) TiO_2 @PLDOPA@Ag1, (b) TiO_2 @PLDOPA@Ag2 and (c) TiO_2 @PLDOPA@Ag3. At least 100 measurements were collected from the randomly selected silver nanostructures.

Figure S4. EDX spectra of TiO₂@PLDOPA@Ag NP systems for a different amount of silver. (a) TiO₂@PLDOPA@Ag1, (b) TiO₂@PLDOPA@Ag2 and (c) TiO₂@PLDOPA@Ag3.

Figure S5. Catalytic degradation of MB over time in the presence of $TiO_2@PLDOPA@Ag2$ NP system at ambient condition.

Figure S6. The reusability of TiO₂@PLDOPA@Ag2 NP system on SERS and catalytic activity over three cycles.

Figure S7. Time evolution of the UV-vis spectra indicating the conversion of MB in the presence of TiO_2 NWs (a) and, citrate-stabilized silver NPs.

Reference	SERS Platform	Prope Molecule	Enhancement Factor
Shan et al. ¹	Hydrogenated TiO ₂ NWs@Ag	Rhodamine 6G	~10 ⁵
Ling et al. ²	Ag-embedded TiO ₂ nanotubes array	Rhodamine 6G	NA
Kumar et al. ³	AgNP decorated TiO ₂ nanorod array	Rhodamine 6G	~10 ⁵
Xie et al. ⁴	AuNP decorated TiO ₂ nanorod arrays	Rhodamine 6G	~10 ⁴
Dinc et al. ⁵	Au nanoisland decorated TiO ₂ nanorod arrays	Methylene blue	~10 ²
This study	TiO ₂ @PLDOPA@Ag NP systems	Methylene blue	5.1×10^{5}

Table S1. The comparison of AuNP or AgNP decorated TiO₂ nano/microparticles SERS active materials from literature.

Table S2. The comparison of AuNP or AgNP decorated TiO₂ nano/microparticles

Reference	Catalytic Platform	Catalytic	Rate Constant
		Conversion	(h^{-1})
Ali et al. ⁶	Ag-doped TiO ₂ nanoparticles	Degradation of	NA
		methylene blue	
Kumar et al. ³	AgNP decorated	Degradation of	2.58
	TiO_2 nanorod array	Rhodamine 6G	
Liang et al. ⁷	Ag/TiO ₂ nanoparticles	Degradation of	NA
		Rhodamine B	
Ma et al. ⁸	Ag/TiO2 hollow nanospheres	Degradation of	0.6-2.1
		methylene blue	
Mrowetz et al. ⁹	Au/TiO ₂ systems	Degradation of	0.13-0.29
		acid red 1	
This study	TiO2@PLDOPA@Ag NP	Degradation of	0.083-0.644
	systems	methylene blue	

catalytic systems from literature.

References

- 1. Y. Shan, Y. Yang, Y. Cao, H. Yin, N. V. Long and Z. Huang, *RSC Advances*, 2015, **5**, 34737-34743.
- 2. Y. Ling, Y. Zhuo, L. Huang and D. Mao, *Applied Surface Science*, 2016, **388**, 169-173.
- 3. S. Kumar, D. K. Lodhi and J. Singh, *RSC advances*, 2016, **6**, 45120-45126.
- 4. Z. Xie, F. Zhao, S. Zou, F. Zhu, Z. Zhang and W. Wang, *Journal of Alloys and Compounds*, 2021, **861**, 157999.
- 5. D. O. Dinc, M. Yilmaz, S. Sebnem Cetin, M. Turk and E. Piskin, *Surface Innovations*, 2019, **7**, 249-259.
- 6. T. Ali, A. Ahmed, U. Alam, I. Uddin, P. Tripathi and M. Muneer, *Materials Chemistry and Physics*, 2018, **212**, 325-335.
- 7. H. Liang, Z. Jia, H. Zhang, X. Wang and J. Wang, *Applied Surface Science*, 2017, **422**, 1-10.
- 8. H. Ma, W. Zheng, X. Yan, S. Li, K. Zhang, G. Liu and L. Jiang, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2020, **586**, 124283.
- 9. M. Mrowetz, A. Villa, L. Prati and E. Selli, *Gold Bulletin*, 2007, **40**, 154-160.