Supplementary Information

Optimizing the dynamic and thermodynamic properties of hybridization in DNA-mediated nanoparticle self-assembly

Qiuyan Yu, Dongjian Shi, Weifu Dong, Mingqing Chen*

The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China

To whom correspondence should be addressed.

E-mail: mqchen@jiangnan.edu.cn

Calculation method of related physical quantities

1. Distance between two paired sticky beads

As strand-to-strand separation of DNA duplex is about σ (Fig. S1), the distance of about σ between two sticky beads is reasonable for forming a hydrogen bond. Therefore, DNA hybridization or duplex formation herein is defined if a sticky bead of a DNA strand is within the distance of σ away from its complementary sticky bead, namely, forming a hydrogen bond.

Fig. S1 Example of hybridization between two DNA-NPs by linker-linker pairing interaction. The distance between two paired sticky beads $r = \sigma$.

2. Determine BCC lattice by structure factor

The structure factor is defined as $S(\mathbf{q}) = \frac{1}{N} \left\langle \sum_{jk} e^{-i\mathbf{q} \cdot \mathbf{q} \cdot \mathbf{q} \cdot \mathbf{y}} \right\rangle$, where \mathbf{q} is the wave vector, N is the number of nanoparticles, $\mathbf{r}_{j}^{\mathbf{w}}, \mathbf{r}_{k}^{\mathbf{w}}$ (j, k = 1, 2, 3, ..., N) are the positions of NPs.^{1, 2} For BCC, the peaks q_{1} , q_{2} , q_{3} , q_{4} , q_{5} , q_{6} , q_{7} , q_{8} is equal to $\sqrt{2}, \sqrt{4}, \sqrt{6}, \sqrt{8}, \sqrt{10}, \sqrt{12}, \sqrt{14}, \sqrt{16}$ corresponding to crystallographic planes (101), (200), (211), (220), (301), (222), (321), (400) (**Fig. S2**). Our simulation result agrees well with the theoretical peaks.

Fig. S2 (a) BCC lattice snapshot (left: all DNA-NP beads, right: only nanoparticle beads) obtained from MD simulation under the conditions $n_1 = 3$, $n_s = 8$, n = 50, D = 10 at T = 1.4. (b) Structure factor is used to determine the lattice structure.

3. Average distance between hybrid nearest neighbor A and B nanoparticles r_0

The nearest neighbor distance r_0 between hybrid nearest-neighbor A and B nanoparticles present an increasing trend due to increasing nanoparticle size D (Fig. S3a). r_0 can be identified by the first sharp peak position of pair radial distribution function g(r) (Fig. S3b), giving the probability of finding a particle (or molecule) at distance *r* away from a reference particle, relative to that for the ideal gas distribution.³ Although, g(r) can be measured for separations no greater than one half the edge length of the simulation cell ($L = L_x = L_y = L_z$), the first peak position r_0 ($r_0 < L/2$) is indeed reliable. More importantly, the number integral over g(r) for the first peak square corresponds to coordination number ($N_{coor} = 2 \int_0^{r_0} 4\pi r^2 \rho_0 g(r) dr, \rho_0$ is the average number density) of nanoparticles, saying the average number of hybrid nearest-neighbor A and B nanoparticles.^{4, 5} Fig. S3c shows coordination number presents a downward trend with increasing nanoparticle size *D*.

Fig. S3 (a) Related distances containing R_e , r_0 , R_{N-E} and Δ as a function of nanoparticle size D in DNA-NP systems with $D = 2\sim20$, n = 60, $n_1 = 3$ and $n_s = 8$ at T = 1.3. Here R_e , r_0 , R_{N-E} represent the root mean square end-to-end distance of DNA chains, average distance between hybrid nearest-neighbor A and B nanoparticles, average distance between nanoparticles and the end of DNA chains, respectively. $\Delta = 2R_{N-E}-r_0$, representing contact distance parameter of sticky linker beads. (b) Radical distribution functions g(r) of nanoparticles. (c) Coordination number ($N_{coor} = 2\int_{0}^{r_0} 4\pi r^2 \rho_0 g(r) dr$, ρ_0 is the average number density) of nanoparticles, namely, the average number of hybrid nearest-neighbor A and B nanoparticles.

4. Effective volume fraction ϕ

If every DNA-NP molecule is regarded as a sphere, the volume fraction of all DNA-NP spheres

 $\phi_0 = \frac{4\pi N R_{\text{N-E}}^3}{3L^3}$ where $R_{\text{N-E}}$ is the average distance between nanoparticle and the end of DNA chains, N (= 54) is the number of nanoparticles in our simulation system, L is the length of simulation box length. Thus, the volume V_{h} of hybrid shadow part is double-counted and should be subtracted (**Fig. S4a**).

The shadow part volume $V_{\rm h} = 2\pi H^2 (R - H/3)$, where *R* is the radius of the sphere, *H* is the height of the spherical cap in **Fig. S4b**. Here $R = R_{\rm N-E}$, $H = \Delta/2 = R_{\rm N-E} - r_0/2$, then

 $V_{\rm h} = \frac{4}{3}\pi R_{\rm N-E}^3 - \pi R_{\rm N-E}^2 r_0 + \frac{\pi}{12}r_0^3$. There is not only one nanoparticle to bond with every nanoparticle by DNA interaction in the DNA-NP systems. We estimate volume fraction of all hybrid parts

$$f_{\rm h} = N_{\rm coor}V_{\rm s} / (\frac{4}{3}\pi R_{\rm N-E}^3)$$
, then $f_{\rm h} = [1 - \frac{3}{4}\frac{r_0}{R_{\rm N-E}} + \frac{1}{16}(\frac{r_0}{R_{\rm N-E}})^3]N_{\rm coor}$ where $N_{\rm coor}$ is the number of nearest

neighbor nanoparticles, saying the number of hybrid parts. Therefore, The real effective volume

fraction $\phi = \frac{4\pi N R_{\text{N-E}}^3}{3L^3} (1 - f_{\text{h}})$

Fig. S4 (a) Schematic illustration of hybridization between two DNA-NPs by linker-linker pairing interaction for binary self-assembly system. (b) Sketch drawing of the shadow part.

5. Free energy calculated by nearest-neighbor rule

Herein, we take the base sequences 5'TAAT TAAT TAAT-3'/3'-ATTA ATTA ATTA-5' as an example to calculate the free energy by using the nearest-neighbor rule^{6, 7}:

 $\Delta G^{\circ}_{37}(\text{total}) = \Delta G^{\circ}_{37 \text{ initiation}} + \Delta G^{\circ}_{37 \text{ symmetry}} + \Sigma \Delta G^{\circ}_{37 \text{ stack}} + \Delta G^{\circ}_{\text{AT terminal}}$ 5'-TAAT TAAT TAAT-3' = $\Delta G^{\circ}_{37 \text{ initiation}} + \Delta G^{\circ}_{37 \text{ symmetry}} + 2(\text{TA} + \text{AA} + \text{AT} + \text{TT}) + \text{TA} + \text{AA} + \text{AT} + \text{AT} + \text{AT} + \text{AT}$ 3'-ATTA ATTA ATTA-5' AT TT TA AA AT TT TA

 ΔG°_{37} (predicted) = 1.96+0+2×(-0.58-1.00-0.88-1.00)-0.58-1.00-0.88+0.05

= -7.37kcal/mol = -30.84kJ/mol

Propagation sequence	ΔH°	ΔS°	ΔG°
	(kcal mol ⁻¹)	(e.u.)	(kcal mol ⁻¹)
AA/TT	-7.6	-21.3	-1.00
AT/TA	-7.2	-20.4	-0.88
TA/AT	-7.2	-21.3	-0.58
CA/GT	-8.5	-22.7	-1.45
GT/CA	-8.4	-22.4	-1.44
CT/GA	-7.8	-21.0	-1.28
GA/CT	-8.2	-22.2	-1.30
CG/GC	-10.6	-27.2	-2.17
GC/CG	-9.8	-24.4	-2.24
GG/CC	-8.0	-19.9	-1.84
Initiation	+0.2	-5.7	+1.96
Terminal AT penalty	+2.2	+6.9	+0.05
Symmetry correction	0.0	-1.4	+0.43

Table S1. Nearest-neighbor thermodynamic parameters for DNA Watson-Crick pairs in 1 M NaCl⁷

The slash indicates the sequences are given in antiparallel orientation. (e.g., AC/TG means 5'-AC-3' is Watson-Crick base paired with 3'-TG-5'). The symmetry correction applies to only self-complementary duplexes. The terminal AT penalty is applied for each end of a duplex that has a terminal AT (a duplex with both end closed by AT pairs would have a penalty of +0.1 kcal/mol for ΔG°_{37}). 1 kcal/mol = 4.184 kJ/mol.

Fig. S5 Hybridization properties for DNA-NP systems with DNA chain length $N_{\rm L} = 6 \sim 17$, $n_{\rm l} = 3$, D = 10, n = 60. (a) The three panels represent the volume fraction of all hybrid parts $f_{\rm h}$, volume fraction of all DNA-NP spheres ϕ_0 and real effective volume fraction $\phi = \phi_0(1-f_{\rm h})$ at T = 1.3, respectively. (b) $p_{\rm h}$ as a function of T. (c) -ln*K* as a function of 1/T: the solid lines are least-square fits to the data points from simulation. (d) ΔG , ΔH and $-T\Delta S$ in unit of kJ/mol of DNA hybridization as a function of $N_{\rm L}$ at room temperature.

Fig. S6 Hybridization properties for DNA-NP systems with different number of DNA chains (n = 10~80) grafted on one nanoparticle, $D = 2 \sim 10$, $n_1 = 3$ and $n_s = 8$. (a) p_h as a function of chain number n for DNA-NP systems with $D = 2 \sim 10$. (b) p_h as a function of T for $n = 10 \sim 80$, D = 10. (c) -lnK as a function of 1/T: the solid lines are least-square fits to the data points from simulation.

Fig. S7 (a) Hybridization example of two DNA-NPs with different nanoparticle sizes. (b) Hybridization percentage p_h as a function of simulation step time *t* for DNA-NP systems with different chain number n = 10 - 80, $n_l = 3$ and $n_s = 8$ at T = 1.3. (c) Average hybridization percentage p_h as a function of *n*.

References

1 Q. Yu, X. Zhang, Y. Hu, Z. Zhang and R. Wang, ACS Nano, 2016, 10, 7485-7492.

2 Q. Yu and R. Wang, Macromolecules, 2018, 51, 8372-8376.

3 A. R. Leach, Molecular modelling: principles and applications, London, Pearson Education Limited, 2001.

4 T. I. N. G. Li, R. Sknepnek, R. J. Macfarlane, C. A. Mirkin and M. O. de la Cruz, Nano Lett., 2012, 12, 2509-2514.

5 T. I. N. G. Li, R. Sknepnek and M. O. de la Cruz, J. Am. Chem. Soc., 2013, 135, 8535-8541.

6 K. J. Breslauer, R. Frank, H. Blocker and L. A. Marky, Proc. Natl. Acad. Sci. USA, 1986, 83, 3746-3750.

7 J. Santalucia and D. Hicks, Annu. Rev. Biophys. Biomol. Struct., 2004, 33, 415-440.