The influence mechanism of molecular structure on peak current and peak

potential in electrochemical detection of typical quinolone antibiotics

Jiawei Li, ^{a,c,d} Qiang Xue,* ^{a,b} Tao Chen, ^{a,b} Fei Liu,^{a,b} Qun Wang,^{a,b} Chunwen Chang, ^{a,b} Xiaohua

Lu,^e Taogeng Zhou,^f Osamu Niwa,^g

^a.MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P.R. China

^b Beijing Key Laboratory of Water Resources and Environmental Engineering, School of Water

Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.

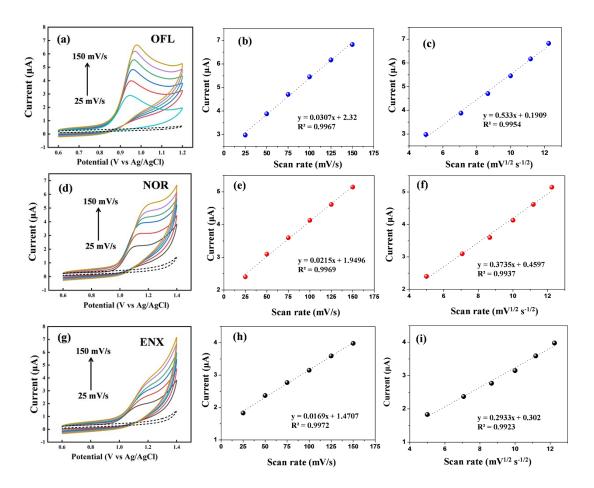
^cAerospace Seahawk Electromechanical Technology Research Institute Co., Ltd. 100074,

Beijing, China

^d Beijing Jinghang Institute of Computing and Communication, 100074, Beijing, China

e National Institute of Metrology, No. 18, Bei San Huan Dong Lu, 100022, Beijing, China

f Beijing Institute of Technology, No. 5, South Zhongguancun Street, 100081, Beijing, China


g Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama, 369-0293, Japan

*Corresponding author: Qiang Xue

E-mail: xueqiang@cugb.edu.cn

Supplementary Material 1

As shown in Figure S1, it is clear that there is a good linear fit between the peak current and scan rate (or square root of scan rate), indicating that it is a surface-confined process.

Fig. S1 Effect of scan rate on the CV measurement of three antibiotics. (a-c) OFL, (d-f) NOR, (g-i) ENX. working electrode: GCE, 0.2 M PB solution (pH=7)

Supplementary Material 2

Figure S2 shows a schematic diagram of the molecular structures of three antibiotics (OFL, NOR and ENX) under different pH conditions.

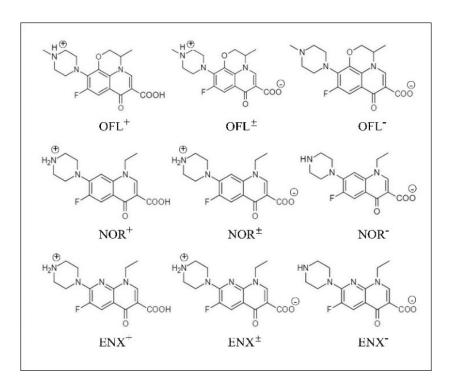


Fig. S2 The diagrams of molecular structure of three antibiotics