¹⁵N NMR studies provide insights into physico-chemical properties of room-temperature ionic liquids

Supplementary Material

Christoph Wiedemann^{1,*}, David Fushman², and Frank Bordusa¹

¹ Martin Luther University Halle-Wittenberg, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Centre, Kurt-Mothes-Str. 3a, 06120 Halle/S., Germany
² Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States * christoph.wiedemann@biochemtech.uni-halle.de

May 15, 2021

Fig. S 1 1D 15 N spectra of [C₂C₁IM][SCN] (a) and [C₂C₁IM][N(CN)₂] (b) are shown.

 Table S 1 T_1 ¹⁵N relaxation times (± standard deviation) of $[C_2C_1 IM]^+$ -based ILs at 293.2 K measured under ¹H broadband decoupling.

				T_1	[s]
		4	0.6 N	IHż	71 MHz
(a) [C ₂ C ₁ IM][CH ₃ CO ₂]	N1	4.	16±0	.14	1.35±0.39
	N3	3.	53±0	.10	1.13±0.19
(b) [C ₂ C ₁ IM][CF ₃ CO ₂]	N1	11.2	20±0	.42	5.50±0.18
	N3	9.8	30±0	.17	4.26±0.20
(c) [C ₂ C ₁ IM][BF ₄]	N1	14. ⁻	10±0	.72	$6.63{\pm}0.56$
	N3	12.8	30±0	.60	$6.68{\pm}0.18$
(d) [C ₂ C ₁ IM][(C ₂ F ₅) ₃ PF ₃]	N1 N3			_a _a	5.48±0.22 4.87±0.14
(e) [C ₂ C ₁ IM][(C ₂ H ₅) ₂ PO ₄]	N1	2.2	27±0	.16	1.18±0.18
	N3	1.9	95±0	.27	1.16±0.06
(f) [C ₂ C ₁ IM][C ₂ H ₅ SO ₄]	N1	4.4	46±0	.16	2.10±0.34
	N3	3.4	47±0	.28	1.63±0.30
(g) [C ₂ C ₁ IM][(C ₅ H ₁₁ O ₂)SO ₄] _{N1}] _{N3}	3. 4.2	15±0 21±0	.20 .74	1.37±0.19 1.32±0.27
(h) [C ₂ C ₁ IM][C ₆ H ₁₃ SO ₄]	N1	2.0	50±0	.31	1.21±0.18
	N3	2.0	50±0	.28	1.08±0.26
(i) [C ₂ C ₁ IM][N(CN) ₂]	N1	17.0	08±2	.41	6.54±0.67
	N3	14.9	98±1	.86	7.19±1.07
(j) [C ₂ C ₁ IM][SCN]	N1 N3			_a _ a	6.28±0.94 4.39±0.03

^a no signal or insufficient signal intensity for a reliable evaluation

$$d = -(\mu_0 \hbar \gamma_N \gamma_H) / (8\pi A r_{\rm NH}^3)$$
(S1)

$$c = -\omega_{\rm N}(\delta_{\parallel} - \delta_{\perp})/3 \tag{S2}$$

$$J(\omega) = \frac{2}{5} \left(\frac{\tau_{\rm c}}{1 + (\omega \tau_{\rm c})^2} \right)$$
(S3)

$$R_{1} = \frac{1}{T_{1}} = 3(d^{2} + c^{2})J(\omega_{\rm N}) + d^{2}[J(\omega_{\rm H} - \omega_{\rm N}) + 6J(\omega_{\rm H} + \omega_{\rm N})]$$
(S4)

$$R_2^{40.6MHz} = \frac{1}{T_2} = \frac{1}{2}(d^2 + c^2)[4J(0) + 3J(\omega_N)] + \frac{1}{2}d^2[J(\omega_H - \omega_N) + 6J(\omega_H) + 6J(\omega_H + \omega_N)] + B$$
(S5)

$$R_2^{71MHz} = \frac{1}{T_2} = \frac{1}{2}(d^2 + c^2)[4J(0) + 3J(\omega_N)] + \frac{1}{2}d^2[J(\omega_H - \omega_N) + 6J(\omega_H) + 6J(\omega_H + \omega_N)] + C$$
(S6)

$$NOE = 1 + \frac{\gamma_{\rm H}}{\gamma_{\rm N}} d^2 \frac{[6J(\omega_{\rm H} + \omega_{\rm N}) - J(\omega_{\rm H} - \omega_{\rm N})]}{R_1}$$
(S7)

Table S 2 Best-fit globally optimized parameters and calculated ¹⁵N relaxation times (T_1 , T_2) and ¹⁵N-{¹H} NOEs (NOE) of [C_2C_1IM]⁺-based ILs at 293.2 K. Experimental T_1 , T_2 and NOE values are taken from Table 2 of the main manuscript. Eqs. (S1) to (S7) were employed for global optimization.

		$ au_{c}$	$ (\delta_{\parallel} - \delta_{\perp}) $	Α	В	С	7 ₁ 40.6 MHz	[s] 71 MHz	T ₂ 40.6 MHz	[s] 71 MHz	NC 40.6 MHz)E 71 MHz	χ^2
(a) [C ₂ C ₁ IM] [CH ₃ CO ₂]	N1 N3	0.86	191.54 198.68	1.06 1.09	0.43 0.29	0.14 0.00	3.01 2.85	1.28 1.19	1.22 1.43	0.89 0.95	0.44 0.49	0.93 0.94	0.00
(b) [C ₂ C ₁ IM]	N1	0.46	123.36 ^a	1.15	0.34	0.21	10.51	4.93	2.25	2.25	-0.49	0.72	1.03
[CF ₃ CO ₂]	N3	0.26	178.02	1.12	0.19	0.11	9.66	4.19	3.28	2.56	-0.50	0.61	0.45
(c) [C ₂ C ₁ IM]	N1	0.68	84.04 ^a	1.18	0.29	0.20	13.25	7.05	2.70	2.67	-0.47	0.74	4.80
[BF ₄]	N3	0.60	92.88 ^a	1.20	0.18	0.14	12.66	6.51	3.69	3.05	-0.53	0.73	15.50
(d) [C ₂ C ₁ IM]	N1	0.15	248.68	1.08	0.40	0.23	9.44	3.71	1.91	1.83	-0.14	0.65	9.87
[(C ₂ F ₅) ₃ PF ₃]	N3	0.80	97.43 ^a	1.20	0.25	0.25	9.75	4.81	2.71	1.97	-0.05	0.84	1.73
(e) [C ₂ C ₁ IM]	N1	2.33	163.98	1.02	1.95	1.78	1.84	1.13	0.37	0.29	0.81	0.97	0.83
[(C ₂ H ₅) ₂ PO ₄]	N3	2.48	164.67	1.04	0.79	1.01	1.77	1.12	0.63	0.36	0.82	0.97	0.09
(f) [C ₂ C ₁ IM]	N1	0.36	237.43	1.10	0.46	0.25	4.62	1.80	1.42	1.11	0.17	0.85	0.26
[C ₂ H ₅ SO ₄]	N3	0.37	249.96	1.12	0.32	0.14	4.14	1.58	1.67	1.13	0.26	0.87	14.32
(g) [C ₂ C ₁ IM]	N1	1.00	174.07	1.05	0.36	0.20	3.06	1.37	1.34	0.87	0.46	0.93	0.03
[(C ₅ H ₁₁ O ₂)SO ₄]	N3	1.16	170.05	1.06	0.20	0.04	2.74	1.29	1.56	0.93	0.51	0.94	0.01
(h) [C ₂ C ₁ IM]	N1	1.41	170.07	1.09	0.68	0.89	2.55	1.20	0.86	0.48	0.71	0.96	0.72
[C ₆ H ₁₃ SO ₄]	N3	2.06	156.04	1.05	0.50	0.69	2.13	1.24	0.89	0.48	0.76	0.96	0.98
(i) [C ₂ C ₁ IM]	N1	0.12	201.67	1.09	0.17	0.10	15.86	6.64	4.23	3.62	-0.52	0.46	0.00
[N(CN) ₂]	N3	0.14	189.50	1.13	0.12	0.07	15.54	6.54	5.30	4.07	-0.52	0.48	0.11
(j) [C ₂ C ₁ IM]	N1	1.04	80.47 ^a	1.14	0.35	0.22	9.44	5.39	2.12	2.16	-0.01	0.84	24.56
[SCN]	N3	1.01	88.64 ^a	1.15	0.29	0.19	8.42	4.65	2.31	2.16	0.01	0.85	19.07

Table S 3 Best-fit globally optimized parameters and calculated ¹⁵N relaxation times (T_1 , T_2) and ¹⁵N-{¹H} NOEs (NOE) of [C_2C_1IM]⁺-based ILs at 293.2 K. Experimental T_2 and NOE values are taken from Table 2 of the main manuscript. T_1 values are taken from Table 3 of the main manuscript. Eqs. (S1) to (S7) were employed for global optimization.

					· ·	/ (, I	, 0					
		$ au_{ m c}$ [ns]	$egin{array}{c} (\delta_{\parallel}-\delta_{\perp}) \ [extsf{ppm}] \end{array}$	A	В	С	<i>T</i> ₁ 40.6 MHz	[s] 71 MHz	<i>T</i> ₂ 40.6 MHz	[s] 71 MHz	NC 40.6 MHz	DE 71 MHz	χ^2
(a) [C ₂ C ₁ IM]	N1	0.48	223.97	1.16	0.54	0.36	4.16	1.57	1.22	0.89	0.44	0.92	0.24
[CH ₃ CO ₂]	N3	0.46	249.82	1.14	0.37	0.14	3.52	1.31	1.43	0.95	0.49	0.92	0.69
(b) [C ₂ C ₁ IM]	N1	0.53	107.96 ^a	1.16	0.34	0.23	11.22	5.49	2.25	2.25	-0.49	0.73	1.23
[CF ₃ CO ₂]	N3	0.23	188.00	1.09	0.19	0.12	9.81	4.22	3.28	2.56	-0.50	0.58	0.07
(c) [C ₂ C ₁ IM]	N1	0.15	193.34	1.11	0.29	0.19	14.61	6.10	2.70	2.67	-0.47	0.51	1.67
[BF ₄]	N3	0.16	178.54	1.12	0.20	0.15	15.15	6.42	3.69	3.05	-0.53	0.51	14.47
(e) [C ₂ C ₁ IM]	N1	1.83	165.30	1.10	2.13	2.08	2.27	1.17	0.37	0.29	0.80	0.97	0.74
[(C ₂ H ₅) ₂ PO ₄]	N3	2.28	162.76	1.05	0.88	1.18	1.95	1.16	0.63	0.36	0.82	0.97	0.09
(f) [C ₂ C ₁ IM]	N1	0.87	145.22	1.06	0.44	0.30	4.46	2.10	1.42	1.11	0.17	0.88	0.00
[C ₂ H ₅ SO ₄]	N3	2.08	56.93 ^a	0.92	0.20	0.45	3.33	3.82	1.69	1.11	0.27	0.79	10.29
(g) [C ₂ C ₁ IM]	N1	0.93	179.59	1.07	0.37	0.22	3.15	1.37	1.34	0.87	0.46	0.93	0.03
[(C ₅ H ₁₁ O ₂)SO ₄]	N3	0.43	244.31	1.17	0.35	0.26	3.97	1.46	1.56	0.93	0.51	0.92	0.31
(h) [C ₂ C ₁ IM]	N1	1.41	168.77	1.09	0.68	0.91	2.59	1.22	0.86	0.48	0.71	0.96	0.73
[C ₆ H ₁₃ SO ₄]	N3	1.16	190.64	1.16	0.66	0.85	2.60	1.09	0.89	0.48	0.76	0.97	1.13
(i) [C ₂ C ₁ IM]	N1	0.10	214.21	1.07	0.17	0.11	16.64	6.94	4.23	3.62	-0.52	0.44	0.43
[N(CN) ₂]	N3	0.14	189.50	1.13	0.12	0.07	15.54	6.54	5.30	4.07	-0.52	0.48	0.11

$$d = -(\mu_0 \hbar \gamma_N \gamma_H) / (8\pi A r_{\rm NH}^3)$$
(S8)

$$c = -\omega_{\rm N} (\delta_{\parallel} - \delta_{\perp})/3 \tag{S9}$$

$$J(\omega) = \frac{2}{5} \left(\frac{\tau_{\rm c}}{1 + (\omega \tau_{\rm c})^2} \right)$$
(S10)

$$R_{1} = \frac{1}{T_{1}} = 3(d^{2} + c^{2})J(\omega_{\rm N}) + d^{2}[J(\omega_{\rm H} - \omega_{\rm N}) + 6J(\omega_{\rm H} + \omega_{\rm N})] + D$$
(S11)

$$R_2^{40.6MHz} = \frac{1}{T_2} = \frac{1}{2}(d^2 + c^2)[4J(0) + 3J(\omega_N)] + \frac{1}{2}d^2[J(\omega_H - \omega_N) + 6J(\omega_H) + 6J(\omega_H + \omega_N)] + B$$
(S12)

$$R_2^{71MHz} = \frac{1}{T_2} = \frac{1}{2}(d^2 + c^2)[4J(0) + 3J(\omega_N)] + \frac{1}{2}d^2[J(\omega_H - \omega_N) + 6J(\omega_H) + 6J(\omega_H + \omega_N)] + C$$
(S13)

$$NOE = 1 + \frac{\gamma_{\rm H}}{\gamma_{\rm N}} d^2 \frac{[6J(\omega_{\rm H} + \omega_{\rm N}) - J(\omega_{\rm H} - \omega_{\rm N})]}{R_1}$$
(S14)

Table S 4 Best-fit globallyoptimized parameters and calculated 15 N relaxation times (T_1 , T_2) and 15 N-{ 1 H} NOEs (NOE) of [C_2C_1 IM]⁺-based ILs at 293.2 K. Experimental T_1 , T_2 and NOE values are taken from Table 2 of the main manuscript. Eqs. (S8) to (S14) were employed for global optimization.

							opun	inzation.						
		τ_{c} [ns]	$ (\delta_{\parallel} - \delta_{\perp}) $	Α	В	С	D	T ₁ 40 6 MHz	[s] 71 MHz	T ₂ 40 6 MHz	[s] 71 MHz	NC 40.6 MHz	0E 71 MHz	χ^2
(a) [C ₂ C ₁ IM] [CH ₃ CO ₂]	N1 N3	0.86 0.88	191.17 198.60	1.06 1.09	0.43 0.28	0.14 -0.02	0.00 -0.01	3.01 2.87	1.28 1.19	1.22 1.43	0.89 0.95	0.44 0.49	0.93 0.94	0.00 0.00
(b) [C ₂ C ₁ IM]	N1	0.21	171.16	1.13	0.36	0.23	0.02	10.50	4.99	2.25	2.25	-0.47	0.58	0.00
[CF ₃ CO ₂]	N3	0.21	189.56	1.12	0.20	0.13	0.01	9.65	4.29	3.28	2.56	-0.50	0.57	0.00
(c) [C ₂ C ₁ IM]	N1	0.10	193.32	1.12	0.32	0.24	0.03	13.25	7.05	2.70	2.67	-0.47	0.46	0.00
[BF ₄]	N3	0.07	236.43	1.06	0.21	0.18	0.03	12.65	6.56	3.69	3.05	-0.52	0.41	0.00
(d) [C ₂ C ₁ IM]	N1	0.13	229.50	1.15	0.43	0.31	0.03	9.32	4.33	1.91	1.83	-0.09	0.65	1.84
[(C ₂ F ₅) ₃ PF ₃]	N3	0.21	169.42	1.27	0.29	0.31	0.04	9.78	4.81	2.71	1.97	0.00	0.74	0.00
(e) [C ₂ C ₁ IM]	N1	1.34	148.86	1.25	2.38	2.60	0.28	1.84	1.13	0.37	0.29	0.80	0.98	0.68
[(C ₂ H ₅) ₂ PO ₄]	N3	1.82	146.63	1.19	1.15	1.71	0.23	1.77	1.12	0.63	0.36	0.82	0.98	0.11
(f) [C ₂ C ₁ IM]	N1	0.37	235.22	1.10	0.46	0.25	0.00	4.62	1.80	1.42	1.11	0.17	0.85	0.26
[C ₂ H ₅ SO ₄]	N3	0.36	249.93	1.13	0.32	0.16	0.01	4.08	1.59	1.68	1.13	0.26	0.87	14.21
(g) [C ₂ C ₁ IM]	N1	0.82	183.51	1.10	0.41	0.28	0.04	3.06	1.37	1.34	0.87	0.46	0.93	0.03
[(C ₅ H ₁₁ O ₂)SO ₄]	N3	0.78	188.20	1.15	0.31	0.22	0.09	2.74	1.29	1.56	0.93	0.51	0.94	0.02
(h) [C₂C₁IM]	N1	1.02	178.75	1.18	0.80	1.11	0.09	2.55	1.20	0.86	0.48	0.71	0.97	0.78
[C ₆ H ₁₃ SO₄]	N3	0.96	158.13	1.33	0.86	1.37	0.25	2.13	1.24	0.89	0.48	0.76	0.97	1.14
(i) [C ₂ C ₁ IM]	N1	0.12	201.69	1.09	0.17	0.10	0.00	15.70	6.65	4.23	3.62	-0.52	0.46	0.00
[N(CN) ₂]	N3	0.14	190.67	1.13	0.12	0.08	0.01	14.92	6.55	5.30	4.07	-0.51	0.48	0.00
(j) [C ₂ C ₁ IM]	N1	0.09	232.62	1.14	0.41	0.30	0.05	9.45	5.11	2.12	2.16	-0.01	0.65	5.78
[SCN]	N3	0.09	249.98	1.15	0.36	0.28	0.06	8.42	4.61	2.31	2.16	0.02	0.66	2.20

Table S 5 Best-fit globallyoptimized parameters and calculated 15 N relaxation times (T_1 , T_2) and 15 N-{ 1 H} NOEs (NOE) of [C_2C_1 IM]⁺-based ILs at 293.2 K. Experimental T_2 and NOE values are taken from Table 2 of the main manuscript. T_1 values are taken from Table 3 of the main manuscript. Eqs. (S8) to (S14) were employed for global optimization.

		τ_{c}	$ (\delta_{\parallel} - \delta_{\perp}) $	Α	В	С	D	<i>T</i> ₁	[s]	<i>T</i> ₂	[s]	NC	θE	χ^2
		[ns]	[ppm]					40.6 MHz	71 MHz	40.6 MHz	71 MHz	40.6 MHz	71 MHz	
(a) [C ₂ C ₁ IM]	N1	0.69	217.08	1.08	0.43	0.10	-0.09	4.16	1.35	1.22	0.89	0.44	0.93	0.00
[CH ₃ CO ₂]	N3	0.80	226.13	1.07	0.21	-0.22	-0.13	3.53	1.13	1.43	0.95	0.49	0.94	0.00
(b) [C ₂ C ₁ IM]	N1	0.21	160.55	1.16	0.37	0.26	0.02	11.20	5.50	2.25	2.25	-0.47	0.58	0.00
[CF ₃ CO ₂]	N3	0.21	191.91	1.11	0.19	0.12	0.00	9.80	4.26	3.28	2.56	-0.50	0.57	0.00
(c) [C ₂ C ₁ IM]	N1	0.10	212.11	1.08	0.31	0.22	0.01	14.10	6.63	2.70	2.67	-0.47	0.46	0.00
[BF ₄]	N3	0.07	233.50	1.07	0.21	0.19	0.03	12.80	6.68	3.69	3.05	-0.52	0.41	0.00
(e) [C ₂ C ₁ IM]	N1	0.99	172.58	1.29	2.39	2.58	0.18	2.27	1.18	0.37	0.29	0.80	0.98	0.67
[(C ₂ H ₅) ₂ PO ₄]	N3	1.92	152.99	1.15	1.08	1.56	0.13	1.95	1.16	0.63	0.36	0.82	0.98	0.11
(f) [C ₂ C ₁ IM]	N1	0.60	164.54	1.13	0.50	0.38	0.04	4.46	2.10	1.42	1.11	0.17	0.88	0.00
[C ₂ H ₅ SO ₄]	N3	0.17	247.00	1.21	0.47	0.56	0.19	3.41	2.09	1.69	1.11	0.27	0.80	3.16
(g) [C ₂ C ₁ IM]	N1	0.87	183.05	1.08	0.39	0.24	0.01	3.15	1.37	1.34	0.87	0.46	0.93	0.03
[(C ₅ H ₁₁ O ₂)SO ₄]	N3	0.59	184.32	1.25	0.41	0.46	0.06	3.97	1.75	1.56	0.92	0.52	0.94	1.51
(h) [C ₂ C ₁ IM]	N1	0.67	205.21	1.26	0.86	1.22	0.12	2.60	1.21	0.86	0.48	0.71	0.96	0.74
[C ₆ H ₁₃ SO ₄]	N3	0.57	240.95	1.31	0.77	1.06	0.08	2.60	1.08	0.89	0.48	0.76	0.97	1.07
(i) [C ₂ C ₁ IM]	N1	0.10	216.23	1.07	0.17	0.11	0.00	16.64	6.93	4.23	3.63	-0.52	0.44	0.44
[N(CN) ₂]	N3	0.14	174.78	1.17	0.13	0.10	0.02	14.90	7.19	5.30	4.07	-0.51	0.48	0.00

$$d = -(\mu_0 \hbar \gamma_N \gamma_H) / (8\pi A r_{\rm NH}^3)$$
(S15)

$$c = -\omega_{\rm N}(\delta_{\parallel} - \delta_{\perp})/3 \tag{S16}$$

$$J(\omega) = \frac{2}{5} \left(\frac{\tau_{\rm c}}{1 + (\omega \tau_{\rm c})^2} \right) \tag{S17}$$

$$R_{1} = \frac{1}{T_{1}} = 3(d^{2} + c^{2})J(\omega_{\rm N}) + d^{2}[J(\omega_{\rm H} - \omega_{\rm N}) + 6J(\omega_{\rm H} + \omega_{\rm N})]$$
(S18)

$$R_2 = \frac{1}{T_2} = \frac{1}{2}(d^2 + c^2)[4J(0) + 3J(\omega_N)] + \frac{1}{2}d^2[J(\omega_H - \omega_N) + 6J(\omega_H) + 6J(\omega_H + \omega_N)] + B$$
(S19)

$$NOE = 1 + \frac{\gamma_{\rm H}}{\gamma_{\rm N}} d^2 \frac{[6J(\omega_{\rm H} + \omega_{\rm N}) - J(\omega_{\rm H} - \omega_{\rm N})]}{R_1} \tag{S20}$$

Table S 6 Best-fit globally optimized parameters and calculated ¹⁵N relaxation times (T_1 , T_2) and ¹⁵N-{¹H} NOEs (*NOE*) of [C₂C₁IM]⁺-based ILs at 293.2 K. Experimental T_1 , T_2 and *NOE* values are taken from Table 2 of the main manuscript. Eqs. (S15) to (S20) were employed for global optimization.

		<i>T</i> -	[(δ ₁ , δ ₁ .)]	Δ	B	<u> </u>	[e]	Τ.	[6]	NC		· ²
		[ns]	[ppm]	7	Б	40.6 MHz	71 MHz	40.6 MHz	71 MHz	40.6 MHz	71 MHz	X
(a) [C ₂ C ₁ IM]	N1	0.86	191.22	1.06	0.30	3.01	1.28	1.45	0.78	0.44	0.93	3.15
[CH ₃ CO ₂]	N3	0.87	196.20	1.09	0.19	2.88	1.21	1.66	0.81	0.49	0.94	2.36
(b) [C ₂ C ₁ IM]	N1	0.57	106.19 ^a	1.14	0.25	10.49	5.26	2.79	2.09	-0.50	0.73	8.96
[CF ₃ CO ₂]	N3	0.31	160.37	1.14	0.17	9.66	4.27	3.55	2.28	-0.50	0.65	5.15
(c) [C ₂ C ₁ IM]	N1	0.68	83.98 ^a	1.18	0.22	13.24	7.05	3.29	2.56	-0.47	0.74	6.91
[BF ₄]	N3	0.63	89.23 ^a	1.19	0.16	12.64	6.65	4.02	2.93	-0.53	0.73	18.00
(d) [C ₂ C ₁ IM]	N1	0.50	133.08	1.17	0.33	9.37	4.08	2.24	1.62	-0.14	0.81	15.03
[(C ₂ F ₅) ₃ PF ₃]	N3	0.80	97.36 ^a	1.20	0.25	9.75	4.82	2.72	1.97	-0.05	0.84	1.73
(e) [C ₂ C ₁ IM]	N1	2.33	163.71	1.02	1.86	1.84	1.13	0.38	0.28	0.80	0.97	0.91
[(C ₂ H ₅) ₂ PO ₄]	N3	2.53	165.64	1.05	0.78	1.77	1.12	0.63	0.39	0.83	0.97	0.36
(f) [C ₂ C ₁ IM]	N1	0.97	131.77 ^a	1.05	0.41	4.63	2.30	1.51	1.03	0.17	0.88	4.29
[C ₂ H ₅ SO ₄]	N3	0.87	166.51	1.06	0.26	3.55	1.62	1.70	0.96	0.27	0.90	31.22
(g) [C ₂ C ₁ IM]	N1	1.10	163.66	1.04	0.32	3.06	1.43	1.40	0.80	0.46	0.93	1.18
[(C ₅ H ₁₁ O ₂)SO ₄]	N3	1.21	164.53	1.05	0.19	2.74	1.33	1.58	0.82	0.50	0.93	2.86
(h) [C ₂ C ₁ IM]	N1	1.41	170.08	1.09	0.76	2.55	1.20	0.80	0.51	0.71	0.96	1.28
[C ₆ H ₁₃ SO ₄]	N3	2.13	156.83	1.07	0.50	2.13	1.24	0.88	0.52	0.79	0.97	1.36
(i) [C ₂ C ₁ IM]	N1	0.13	196.54	1.10	0.16	15.98	6.71	4.36	3.02	-0.52	0.47	2.09
[N(CN) ₂]	N3	0.16	179.90	1.15	0.11	15.52	6.59	5.42	3.48	-0.54	0.49	5.26
(j) [C ₂ C ₁ IM]	N1	1.09	76.85 ^a	1.13	0.32	9.44	5.61	2.27	1.82	-0.01	0.83	27.22
[SCN]	N3	1.03	86.51 ^a	1.15	0.21	8.42	4.74	2.89	2.08	0.00	0.84	23.84

$$d = -(\mu_0 \hbar \gamma_N \gamma_H) / (8\pi A r_{\rm NH}^3)$$
(S21)

$$c = -\omega_{\rm N}(\delta_{\parallel} - \delta_{\perp})/3 \tag{S22}$$

$$J(\omega) = \frac{2}{5} \left(\frac{\tau_{\rm C}}{1 + (\omega \tau_{\rm C})^2} \right)$$
(S23)

$$R_{1} = \frac{1}{T_{1}} = 3(d^{2} + c^{2})J(\omega_{\rm N}) + d^{2}[J(\omega_{\rm H} - \omega_{\rm N}) + 6J(\omega_{\rm H} + \omega_{\rm N})]$$
(S24)

$$R_2^{40.6MHz} = \frac{1}{T_2} = \frac{1}{2} (d^2 + c^2) [4J(0) + 3J(\omega_N)] + \frac{1}{2} d^2 [J(\omega_H - \omega_N) + 6J(\omega_H) + 6J(\omega_H + \omega_N)] + B$$
(S25)

$$R_2^{71MHz} = \frac{1}{T_2} = \frac{1}{2}(d^2 + c^2)[4J(0) + 3J(\omega_N)] + \frac{1}{2}d^2[J(\omega_H - \omega_N) + 6J(\omega_H) + 6J(\omega_H + \omega_N)] + \left(\frac{71MHz}{40.6MHz}\right)^2 B$$
(S26)

$$NOE = 1 + \frac{\gamma_{\rm H}}{\gamma_{\rm N}} d^2 \frac{[6J(\omega_{\rm H} + \omega_{\rm N}) - J(\omega_{\rm H} - \omega_{\rm N})]}{R_1}$$
(S27)

Table S 7 Best-fit globally optimized parameters and calculated ¹⁵N relaxation times (T_1 , T_2) and ¹⁵N-{¹H} NOEs (NOE) of [C₂C₁IM]⁺-based ILs at 293.2 K. Experimental T_1 , T_2 and NOE values are taken from Table 2 of the main manuscript. Eqs. (S21) to (S27) were employed for global optimization.

		$ au_{c}$	$ (\delta_{\parallel} - \delta_{\perp}) $	Α	В	Τ ₁	[s]	<i>T</i> ₂	[s]	NC	Ε	χ^2
		[ns]	[ppm]			40.6 MHz	71 MHz	40.6 MHz	71 MHz	40.6 MHz	71 MHz	
(a) [C ₂ C ₁ IM]	N1	1.11	171.96	1.01	0.07	2.69	1.28	1.95	0.80	0.44	0.93	9.78
[CH ₃ CO ₂]	N3	1.06	181.56	1.06	0.03	2.67	1.21	2.08	0.84	0.49	0.94	5.26
(b) [C ₂ C ₁ IM]	N1	0.58	105.74 ^a	1.14	0.08	10.47	5.26	5.31	2.10	-0.49	0.74	48.55
[CF ₃ CO ₂]	N3	0.40	139.50 ^a	1.15	0.07	9.64	4.41	5.44	2.11	-0.50	0.69	50.68
(c) [C ₂ C ₁ IM]	N1	0.68	83.85 ^a	1.18	0.07	13.23	7.05	6.38	2.56	-0.47	0.74	22.72
[BF ₄]	N3	0.67	85.38 ^a	1.19	0.06	12.55	6.79	6.84	2.85	-0.53	0.73	64.37
(d) [C ₂ C ₁ IM]	N1	0.49	134.22	1.17	0.11	9.36	4.06	4.27	1.57	-0.14	0.81	20.87
[(C ₂ F ₅) ₃ PF ₃]	N3	0.96	87.65 ^a	1.16	0.09	8.92	4.90	4.64	1.91	-0.05	0.84	25.62
(e) [C ₂ C ₁ IM]	N1	2.39	161.51	1.01	0.70	1.84	1.15	0.68	0.26	0.80	0.97	10.58
[(C ₂ H ₅) ₂ PO ₄]	N3	2.48	158.97	1.01	0.78	1.77	1.17	0.63	0.24	0.78	0.96	10.90
(f) [C ₂ C ₁ IM]	N1	1.89	50.37 ^a	0.96	0.23	4.57	5.03	1.98	0.99	0.17	0.77	35.14
[C ₂ H ₅ SO ₄]	N3	0.37	249.91	1.12	0.26	4.15	1.59	1.87	0.65	0.26	0.87	18.36
(g) [C ₂ C ₁ IM]	N1	1.26	149.21	1.02	0.15	3.06	1.55	1.85	0.75	0.46	0.93	13.04
[(C ₅ H ₁₁ O ₂)SO ₄]	N3	1.36	152.16	1.03	0.14	2.74	1.43	1.70	0.71	0.50	0.93	24.67
(h) [C ₂ C ₁ IM]	N1	1.41	169.94	1.09	0.35	2.55	1.20	1.20	0.44	0.71	0.96	4.67
[C ₆ H ₁₃ SO ₄]	N3	2.05	153.71	1.03	0.38	2.11	1.26	0.99	0.39	0.73	0.96	5.59
(i) [C ₂ C ₁ IM]	N1	0.93	67.32 ^a	1.09	0.07	10.14	6.99	5.41	2.48	-0.53	0.70	35.91
[N(CN) ₂]	N3	0.97	64.39 ^a	1.08	0.04	8.93	6.72	5.96	3.21	-0.59	0.66	57.98
(j) [C ₂ C ₁ IM]	N1	1.17	71.42 ^a	1.12	0.14	9.43	5.96	3.75	1.52	-0.01	0.83	63.75
[SCN]	N3	1.03	86.49 ^a	1.15	0.07	8.42	4.74	4.86	2.09	0.00	0.84	46.10

$$d = -(\mu_0 \hbar \gamma_N \gamma_H) / (8\pi A r_{\rm NH}^3)$$
(S28)

$$c = -\omega_{\rm N}(\delta_{\parallel} - \delta_{\perp})/3 \tag{S29}$$

$$J(\omega) = \frac{2}{5} \left(\frac{\tau_{\rm c}}{1 + (\omega \tau_{\rm c})^2} \right)$$
(S30)

$$R_{1} = \frac{1}{T_{1}} = 3(d^{2} + c^{2})J(\omega_{\rm N}) + d^{2}[J(\omega_{\rm H} - \omega_{\rm N}) + 6J(\omega_{\rm H} + \omega_{\rm N})]$$
(S31)

$$R_{2} = \frac{1}{T_{2}} = \frac{1}{2} (d^{2} + c^{2}) [4J(0) + 3J(\omega_{N})] + \frac{1}{2} d^{2} [J(\omega_{H} - \omega_{N}) + 6J(\omega_{H}) + 6J(\omega_{H} + \omega_{N})]$$
(S32)

$$NOE = 1 + \frac{\gamma_{\rm H}}{\gamma_{\rm N}} d^2 \frac{[6J(\omega_{\rm H} + \omega_{\rm N}) - J(\omega_{\rm H} - \omega_{\rm N})]}{R_1}$$
(S33)

Table S 8 Best-fit globally optimized parameters and calculated ¹⁵N relaxation times (T_1 , T_2) and ¹⁵N-{¹H} NOEs (*NOE*) of [C₂C₁IM]⁺-based ILs at 293.2 K. Experimental T_1 , T_2 and *NOE* values are taken from Table 2 of the main manuscript. Eqs. (S28) to (S33) were employed for global optimization.

		Τc	$ (\delta_{\parallel} - \delta_{\perp}) $	Α		[s]	Τ2	[s]	NC)E	χ^2
		[ns]	[ppm]		40.6 MHz	71 MHz	40.6 MHz	71 MHz	40.6 MHz	71 MHz	λ
(a) [C ₂ C ₁ IM]	N1	1.27	163.49	0.99	2.49	1.28	2.06	0.93	0.45	0.92	12.39
[CH ₃ CO ₂]	N3	1.11	178.56	1.05	2.59	1.20	2.16	0.91	0.49	0.93	5.67
(b) [C ₂ C ₁ IM]	N1	0.14	240.91	1.05	10.38	4.25	9.26	3.69	-0.38	0.54	137.73
[CF ₃ CO ₂]	N3	0.20	203.08	1.10	9.61	4.09	8.61	3.54	-0.50	0.56	113.11
(c) [C ₂ C ₁ IM]	N1	0.68	83.84 ^a	1.18	13.18	7.03	11.68	5.79	-0.47	0.75	100.82
[BF ₄]	N3	0.18	186.57	1.13	12.63	5.38	11.32	4.66	-0.52	0.52	192.61
(d) [C ₂ C ₁ IM]	N1	0.18	230.23	1.10	9.42	3.72	8.34	3.21	-0.14	0.67	26.02
[(C ₂ F ₅) ₃ PF ₃]	N3	3.22	81.57 ^a	1.44	7.49	5.06	4.65	1.99	0.91	0.99	97.34
(e) [C ₂ C ₁ IM]	N1	5.83	172.82	1.14	1.84	1.60	0.70	0.28	0.96	0.99	26.42
[(C ₂ H ₅) ₂ PO ₄]	N3	6.12	184.04	1.25	1.76	1.49	0.63	0.24	0.98	0.99	28.23
(f) [C ₂ C ₁ IM]	N1	0.36	243.47	1.09	4.43	1.72	3.88	1.46	0.17	0.85	96.96
[C ₂ H ₅ SO ₄]	N3	0.38	249.79	1.12	4.06	1.56	3.55	1.32	0.26	0.87	43.76
(g) [C ₂ C ₁ IM]	N1	0.96	179.87	1.06	3.05	1.33	2.58	1.04	0.48	0.93	30.88
[(C ₅ H ₁₁ O ₂)SO ₄]	N3	1.83	139.45 ^a	1.07	2.74	1.55	2.11	0.97	0.69	0.95	87.87
(h) [C ₂ C ₁ IM]	N1	1.44	169.40	1.09	2.53	1.20	2.04	0.83	0.72	0.96	30.22
[C ₆ H ₁₃ SO ₄]	N3	3.97	170.35	4.14 ^a	2.03	1.35	1.10	0.41	1.00	1.00	18.18
(i) [C ₂ C ₁ IM]	N1	1.10	57.97 ^a	1.03	7.84	6.60	6.81	5.08	-0.51	0.65	76.19
[N(CN) ₂]	N3	1.18	54.67	1.04	7.34	6.52	6.32	4.93	-0.43	0.66	102.53
(j) [C ₂ C ₁ IM]	N1	0.97	86.16 ^a	1.15	9.41	5.09	8.08	3.97	0.00	0.85	119.67
[SCN]	N3	0.83	106.53 ^a	1.19	8.42	4.01	7.27	3.21	0.09	0.87	132.30

$$d = -(\mu_0 \hbar \gamma_N \gamma_H) / (8\pi r_{\rm NH}^3) \tag{S34}$$

$$c = -\omega_{\rm N} (\delta_{\parallel} - \delta_{\perp})/3 \tag{S35}$$

$$J(\omega) = \frac{2}{5} \left(\frac{\tau_{\rm c}}{1 + (\omega \tau_{\rm c})^2} \right)$$
(S36)

$$R_{1} = \frac{1}{T_{1}} = 3(d^{2} + c^{2})J(\omega_{\rm N}) + d^{2}[J(\omega_{\rm H} - \omega_{\rm N}) + 6J(\omega_{\rm H} + \omega_{\rm N})]$$
(S37)

$$R_{2} = \frac{1}{T_{2}} = \frac{1}{2} (d^{2} + c^{2}) [4J(0) + 3J(\omega_{N})] + \frac{1}{2} d^{2} [J(\omega_{H} - \omega_{N}) + 6J(\omega_{H}) + 6J(\omega_{H} + \omega_{N})]$$
(S38)

$$NOE = 1 + \frac{\gamma_{\rm H}}{\gamma_{\rm N}} d^2 \frac{[6J(\omega_{\rm H} + \omega_{\rm N}) - J(\omega_{\rm H} - \omega_{\rm N})]}{R_1}$$
(S39)

Table S 9 Best-fit globally optimized parameters and calculated ¹⁵N relaxation times (T_1 , T_2) and ¹⁵N-{¹H} NOEs (*NOE*) of [C₂C₁IM]⁺-based ILs at 293.2 K. Experimental T_1 , T_2 and *NOE* values are taken from Table 2 of the main manuscript. Eqs. (S34) to (S39) were employed for global optimization.

		Τc	$ (\delta_{\parallel} - \delta_{\perp}) $	Τ.	[s]	T ₂	[s]	NC)E	χ^2
		[ns]	[ppm]	40.6 MHz	71 MHz	40.6 MHz	71 MHz	40.6 MHz	71 MHz	λ
(a) [C ₂ C ₁ IM]	N1	1.21	166.93	2.58	1.28	2.14	0.94	0.45	0.93	12.57
[CH ₃ CO ₂]	N3	1.34	163.93	2.36	1.24	1.94	0.88	0.47	0.93	7.12
(b) [C ₂ C ₁ IM]	N1	0.13	241.13	10.23	4.42	9.22	3.86	-0.68	0.39	151.04
[CF ₃ CO ₂]	N3	0.10	281.13 ^a	9.70	4.05	8.70	3.53	-0.53	0.44	118.54
(c) [C ₂ C ₁ IM]	N1	0.08	250.00	15.86	6.74	14.28	5.89	-0.66	0.34	327.75
[BF ₄]	N3	0.09	250.00	13.32	5.83	12.05	5.10	-0.80	0.28	401.96
(d) [C ₂ C ₁ IM]	N1	1.25	0.18 ^a	8.16	11.10	7.05	8.39	-0.68	0.39	256.80
[(C ₂ F ₅) ₃ PF ₃]	N3	1.23	72.14 ^a	5.27	4.29	4.49	3.19	-0.25	0.73	276.12
(e) [C ₂ C ₁ IM]	N1	6.43	160.91	1.84	1.85	0.63	0.28	0.92	0.98	27.83
[(C ₂ H ₅) ₂ PO ₄]	N3	6.14	159.37	1.75	1.79	0.63	0.29	0.91	0.98	35.01
(f) [C ₂ C ₁ IM]	N1	1.34	101.83 ^a	4.26	2.75	3.54	1.97	0.17	0.86	128.38
[C ₂ H ₅ SO ₄]	N3	1.17	145.42	3.01	1.62	2.53	1.21	0.25	0.89	62.49
(g) [C ₂ C ₁ IM]	N1	1.40	136.07	3.05	1.70	2.49	1.20	0.43	0.92	38.03
[(C ₅ H ₁₁ O ₂)SO ₄]	N3	1.71	127.89	2.73	1.72	2.16	1.11	0.50	0.92	102.11
(h) [C ₂ C ₁ IM]	N1	1.48	162.09	2.34	1.23	1.89	0.85	0.58	0.94	91.67
[C ₆ H ₁₃ SO ₄]	N3	2.60	144.50	1.93	1.38	1.34	0.67	0.76	0.96	40.25
(i) [C ₂ C ₁ IM]	N1	1.17	49.71 ^a	7.05	6.75	6.10	5.13	-0.53	0.60	79.62
[N(CN) ₂]	N3	1.10	47.86 ^a	6.58	6.60	5.75	5.11	-0.71	0.53	120.61
(j) [C ₂ C ₁ IM]	N1	0.10	300.52 ^a	9.73	3.88	8.66	3.36	-0.27	0.55	168.43
[SCN]	N3	0.08	365.32 ^a	8.42	3.23	7.44	2.79	-0.05	0.63	154.02

Table S 10 Contribution (in %) of the various relaxation mechanisms to the overall T ₁ relaxation time at the both magnetic field strengths used in
this study. Reported are the contribution by dipolar interaction, relaxation by chemical shift anisotropy (CSA) and contributions of ¹⁹ F in the
anions or the anion in general (D).

			<i>T</i> ₁ (40.6 MHz)	<i>T</i> ₁ (71 MHz)			
		dipolar	CSA (D	dipolar	CSA (D
(a) [C ₂ C ₁ IM]	N1	21.90	78.10	-	6.87	93.13	-
[CH ₃ CO ₂]	N3	20.13	79.87	-	6.22	93.78	-
(b) [C ₂ C ₁ IM]	N1	25.18	54.37	20.46	9.90	80.20	9.90
[CF ₃ CO ₂]	N3	28.30	62.16	9.53	10.36	85.34	4.30
(c) [C ₂ C ₁ IM]	N1	18.11	42.49	39.39	9.07	69.79	21.14
[BF ₄]	N3	19.67	42.61	37.72	10.13	69.72	20.15
(d) [C ₂ C ₁ IM]	N1	14.33	56.87	28.79	5.97	80.67	13.35
$[(C_2F_5)_3PF_3]$	N3	13.17	49.11	37.72	5.40	75.55	19.05
(e) [C ₂ C ₁ IM]	N1	26.30	73.70		10.00	90.00	
$[(C_2H_5)_2PO_4]$	N3	26.33	73.67	-	10.05	89.95	-
(f) [C ₂ C ₁ IM]	N1	18.92	81.08	-	5.33	94.67	-
$[C_2H_5SO_4]$	N3	17.58	82.42	-	4.88	95.12	-
(g) [C ₂ C ₁ IM]	N1	25.09	74.91	-	8.36	91.64	-
[(C ₅ H ₁₁ O ₂)SO ₄]	N3	26.30	73.70	-	9.12	90.88	-
(h) [C ₂ C ₁ IM]	N1	19.82	80.18	-	6.73	93.27	-
[C ₆ H ₁₃ SO ₄]	N3	27.84	72.16	-	10.61	89.39	-
(i) [C ₂ C ₁ IM]	N1	31.22	68.78	-	11.90	88.10	-
[N(CN) ₂]	N3	31.76	68.24	-	11.89	88.11	-
(j) [C ₂ C ₁ IM]	N1	10.87	40.78	48.35	5.59	68.05	26.35
[SCN]	N3	10.09	40.29	49.63	5.22	67.59	27.19

 Table S 11 Contribution (in %) of the various relaxation mechanisms to the overall T2 relaxation time at the both magnetic field strengths used in this study. Reported are the contribution by dipolar interaction and relaxation by chemical shift anisotropy (CSA). Field strength dependent contributions from chemical exchange and other undefined sources are summarized in *B* and *D*, respectively.

			T ₂ (40.6 MHz)			T ₂ (71 MHz)	
		dipolar	- CSA (В	dipolar	- CSA /	С
(a) [C ₂ C ₁ IM]	N1	9.71	38.01	52.28	5.72	81.87	12.41
[CH ₃ CO ₂]	N3	10.98	47.81	41.21	5.91	94.09	0.00
(b) [C ₂ C ₁ IM]	N1	5.53	13.90	80.57	4.61	43.14	52.25
[CF ₃ CO ₂]	N3	9.73	24.90	65.37	6.32	60.12	33.56
(c) [C ₂ C ₁ IM]	N1	3.71	10.16	86.12	3.50	31.39	65.11
[BF ₄]	N3	5.90	14.91	79.19	4.77	38.31	56.91
(d) [C ₂ C ₁ IM]	N1	2.91	13.46	83.64	2.52	39.57	57.91
[(C ₂ F ₅) ₃ PF ₃]	N3	3.84	16.68	79.48	2.27	36.66	61.07
(e) [C ₂ C ₁ IM]	N1	7.15	20.79	72.06	4.72	43.71	51.57
[(C ₂ H ₅) ₂ PO ₄]	N3	12.92	37.47	49.61	6.24	57.37	36.40
(f) [C ₂ C ₁ IM]	N1	5.85	28.97	65.18	3.45	68.87	27.68
[C ₂ H ₅ SO ₄]	N3	7.22	39.07	53.71	3.68	80.42	15.90
(g) [C ₂ C ₁ IM]	N1	12.27	39.75	47.98	6.61	75.97	17.42
[(C ₅ H ₁₁ O ₂)SO ₄]	N3	17.11	51.46	31.43	8.46	87.83	3.72
(h) [C ₂ C ₁ IM]	N1	7.86	33.70	58.44	3.72	53.43	42.84
[C ₆ H ₁₃ SO ₄]	N3	15.07	40.70	44.23	6.91	59.96	33.13
(i) [C ₂ C ₁ IM]	N1	8.05	20.69	71.28	6.52	56.24	37.24
[N(CN) ₂]	N3	10.61	26.59	62.81	7.41	63.85	28.74
(j) [C ₂ C ₁ IM]	N1	2.39	10.46	87.15	2.30	32.68	65.02
[SCN]	N3	2.84	13.25	83.91	2.48	37.39	49.63