The electronic supplementary information for

Designing an alkali-metal-like superatom Ca₃B for ambient nitrogen

reduction to ammonia

Xiao-Ling Zhang,^{a,b} Ya-Ling Ye,^{a,b} Li Zhang,^{a,b} Xiang-Hui Li,^c Dan Yu,^d Jing-Hua Chen,^b and Wei-Ming Sun^{*a,b}

^aDepartment of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou 350108, People's Republic of China. E-mail: sunwm@fjmu.edu.cn

^bFujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The

School of Pharmacy, Fujian Medical University, Fuzhou 350108, People's Republic of China.

^cThe School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350004, Fujian, People's Republic of China

^dLaboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China.

Table of Contents

1. Tables
Table S1 HOMO-LUMO gaps of the most stable Ca3B cluster calculated by using CAM-B3LYP,LC-BLYP, M06-2X methods
Table S2 The VIE and NPA charge on boron atom of M_3B (M = Be, Mg, and Ca)
Table S3 The change in NPA charges of Ca ₃ subunit, B atom, and N ₂ of Ca ₃ B-N ₂ before and after of N ₂ adsorption
2. Figures
Fig. S1 Optimized structures of Ca ₃ B ⁺ with relative bond lengths, NPA charges, symmetry, and selected bond angles
Fig. S2 Global minima of the Mg ₃ B and Be ₃ B with selected bond lengths, bond angle, and symmetry
Fig. S3 The relationship between the VIE values and NPA charges on boron atom as atomic number of alkaline-earth ligand increases
Fig. S4 Optimized structures, selected bond lengths, symmetries, and relative energies of low-lying Ca ₃ B-N ₂ isomers
Fig. S5 Optimized structures and N-N bond distance of N ₂ , HN=NH, and PhN=NPh S10
Fig. S6 Optimized structures, selected bond lengths, symmetries, and <i>E</i> _{ad} for absorbing H ⁺ /e ⁻ to ^a N or ^b N
Fig. S7 The distance of the N-N bond of each intermediate in the reduction pathway S12

1. Tables

Table S1 The HOMO-LUMO gaps for α -spin and β -spin states (Gap_{α} and Gap_{β}, in eV) of the most stable Ca₃B cluster calculated by using CAM-B3LYP, LC-BLYP, and M06-2X methods in conjunction with the 6-311+G(3df) basis set.

Isomers	CAM-B3LYP	LC-BLYP	M06-2X
Gapa	3.27	4.63	2.72
Gap _β	4.35	4.90	3.27

Table S2. The calculated vertical ionization energies (VIEs, in eV) at the CCSD(T)//PBE0/6-311+G(3df) level and NPA charges on boron atom (Q_B , |e|) of M₃B (M = Be and Mg) at the PBE0/6-311+G(3df) level.

Species	VIE	$Q_{ m B}$
Be ₃ B	6.91	-1.045
Mg ₃ B	5.19	-1.855

Subunits	Before N ₂ adsorption	After N ₂ adsorption	ΔQ
Ca ₃	2.198	2.182	-0.016
В	-2.198	-0.389	1.809
N2	0.000	-1.793	-1.793

Table S3. The change in NPA charges (ΔQ , |e|) on Ca₃, B atom, and N₂ subunits before and after the N₂ adsorption to Ca₃B at the PBE0/6-311+G(3df) level, where $\Delta Q = Q_{after} - Q_{before}$.

2. Figures

Fig. S1. Optimized structure of Ca_3B^+ with relative bond lengths, NPA charges, symmetry, and selected bond angle at the PBE0/6-311+G(3df) level.

Fig. S2. Global minima of the Mg₃B and Be₃B with selected bond lengths, bond angles, and symmetries at the PBE0/6-311+G(3df) level.

Fig. S3. The relationship between VIE values of M_3B and NPA charges on boron atom (Q_B) as atomic number of alkaline-earth ligand increases.

Fig. S4. The optimized structures, selected bond lengths, symmetries, and relative energies (E_{rel} , in kcal/mol) of low-lying Ca₃B-N₂ isomers at the PBE0/6-311+G(3df) level.

Fig. S5. The optimized structures and N-N bond distance of N_2 , diazene (HN=NH), and azobenzene (PhN=NPh) at the PBE0/6-311+G(3df) level.

Fig. S6. The optimized structures, selected bond lengths, and adsorption energies (ΔE) for NNH* complex, where $\Delta E = E(\text{NNH*}) - E(\text{N}_2*) - E(\text{H}^+) - E(\text{e}^-)$.

Fig. S7. The variation of N-N distance of critical intermediates in the NRR process of Ca₃B.