Supporting Information for:

A computational study of the properties of low- and high-index Pd, Cu and Zn

surfaces

Lara Kabalan¹, Igor Kowalec¹, C. Richard A. Catlow^{1,2,3} and Andrew J. Logsdail^{1,*}

¹Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT,

Wales, UK

² Department of Chemistry, University College London, 20 Gordon Street, London, WC1E 6BT, UK

³ UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11

OFA, UK

Correspondence address: LogsdailA@cardiff.ac.uk

I. Figures

Figure S1. The Pd (111) surface facet (FCC). Left: View of the surface *xy*-plane; Right: View perpendicular to the surface along the *yz*-plane. The 1x1x7 unit cell is shown with a dotted line, including 20 Å vacuum above and below the surface; to aid viewing of the surface, the model has been replicated twofold, giving a supercell view, in the directions of the surface plane.

¥_x

Figure S2. The Pd (100) surface facet (FCC). Left: View of the surface *xy*-plane; Right: View perpendicular to the surface along the *yz*-plane. The 1x1x7 unit cell is shown with a dotted line, including 20 Å vacuum above and below the surface; to aid viewing of the surface, the model has been replicated twofold, giving a supercell view, in the directions of the surface plane.

Figure S3. The Pd (110) surface facet (FCC). Left: View of the surface *xy*-plane; Right: View perpendicular to the surface along the *yz*-plane. The 1x1x7 unit cell is shown with a dotted line, including 20 Å vacuum above and below the surface; to aid viewing of the surface, the model has been replicated twofold, giving a supercell view, in the directions of the surface plane.

¥_x

Figure S4. The Zn (0001) surface facet (HCP). Left: View of the surface *xy*-plane; Right: View perpendicular to the surface along the *yz*-plane. The 1x1x7 unit cell is shown with a dotted line, including 20 Å vacuum above and below the surface; to aid viewing of the surface, the model has been replicated twofold, giving a supercell view, in the directions of the surface plane.

Figure S5. The Zn (10-10) surface facet (HCP). Left: View of the surface *xy*-plane; Right: View perpendicular to the surface along the *yz*-plane. The 1x2x7 unit cell is shown with a dotted line, including 20 Å vacuum above and below the surface; to aid viewing of the surface, the model has been replicated twofold, giving a supercell view, in the directions of the surface plane.

<u>Ұ</u>_х

Figure S6. The surface energy (Jm^{-2}) for Cu (111), (100) and (110) facets, given in the top, middle and bottom graphs, respectively, as function of **k**-grid density (Å⁻¹) in the *x*- and *y*-directions. A key is given to show how many layers (5-10) were considered in the respective models.

Figure S7. The surface energy (Jm^{-2}) for Zn (0001) and (10-10) facets, given in the top and bottom graphs, respectively, as function of **k**-grid density (Å⁻¹) in the x- and y-directions. A key is given to show how many layers (5-10) were considered in the respective models.

II. Tables

Table S1. Lattice parameters (a_0 , given in Å) and cohesive energies (E_{coh} , given in eV/atom) calculated for Pd with different exchange functionals. Δa_0 and ΔE_{coh} are differences (%), and defined such that a negative sign indicates that the calculated value is lower than experiment. The MPAE is as defined in the main manuscript.

		a ₀	Δa_0	$E_{\rm coh}$	$\Delta E_{ m coh}$	MPAE
	PBE	3.93	1.18	3.73	-4.11	2.65
	(+TS)	(3.90)	(0.41)	(4.00)	(2.82)	(1.61)
	(+MBD-NL)	(3.92)	(0.80)	(3.98)	(2.54)	(1.67)
	PBEsol	3.87	-0.53	4.48	15.29	7.91
	PBEint	3.97	2.106	3.31	-14.83	8.47
GGA	revPBE	3.96	1.84	3.22	-17.22	9.53
	PW91	4.03	3.52	2.99	-23.11	13.31
	RPBE	3.98	2.132	3.10	-20.20	11.17
	R48PBE	4.05	4.13	2.66	-31.44	17.78
	B97-D	3.99	2.414	2.69	-30.74	16.58
	BLYP	4.02	3.40	3.01	-22.62	13.01
	HCTH-407	3.96	1.85	2.30	-40.87	21.36
	mBEEF	3.88	-0.13	3.57	-8.15	4.14
	TPSS	3.89	0.12	4.35	11.90	6.01
Meta-GGA	revSCAN	3.90	0.20	4.30	10.54	5.37
	SCAN	3.88	-0.12	4.35	11.90	6.01
	revTPSS	3.87	-0.53	4.39	12.98	6.76
	TPSSloc	3.82	-1.85	4.96	27.48	14.66
	HSE06	3.92	0.87	3.05	-21.59	11.23
Hybrid	PBE0	3.90	0.30	2.94	-24.42	12.36
	(+TS)	(3.87)	(-0.41)	(3.20)	(-17.73)	(9.07)
	B3LYP	3.98	2.36	2.50	-35.73	19.04
Exp.	Gražulis <i>et al</i> . [1]	3.893	-	-	-	-
r -	Kittel [2]	-	-	3.89	-	-

Table S2. Lattice parameters (a_0 , given in Å) and cohesive energies (E_{coh} , given in eV/atom) calculated for Cu with different exchange functionals. Δa_0 and ΔE_{coh} are differences (%), and defined such that a negative sign indicates that the calculated value is lower than experiment. The MPAE is as defined in the main manuscript.

		a0	Δa_0	$E_{\rm coh}$	$\Delta E_{ m coh}$	MPAE
	PBE	3.63	0.47	3.53	1.14	0.80
	(+TS)	(3.54)	(1.83)	(4.14)	(18.62)	(10.22)
	(+MBD-NL)	(3.60)	(-0.49)	(3.86)	(10.60)	(5.54)
	PBEsol	3.56	-1.38	4.09	17.19	9.29
	PBEint	3.55	-1.77	4.19	20.03	10.90
GGA	revPBE	3.66	1.32	3.13	-10.31	5.82
	PW91	3.60	-0.22	3.87	10.86	5.54
	RPBE	3.67	1.66	3.05	-12.60	7.14
	R48PBE	3.61	0.02	3.62	3.75	1.89
	B97-D	3.68	2.01	2.82	-19.23	10.62
	BLYP	3.70	2.51	2.51	-28.08	15.30
	HCTH-407	3.66	1.33	2.63	-24.64	12.98
	mBEEF	3.57	-1.05	3.52	0.80	0.93
	TPSS	3.57	-1.05	3.83	9.77	5.41
Meta-GGA	revSCAN	3.56	-1.35	3.91	12.09	6.72
	SCAN	3.55	-1.57	3.97	14.01	7.79
	revTPSS	3.55	-1.77	4.18	19.74	10.76
	TPSSloc	3.50	-2.99	4.58	31.23	17.11
	HSE06	3.63	0.50	3.18	-8.88	4.69
Hybrid	PBE0	3.63	0.39	3.14	-10.03	5.21
	(+TS)	(3.83)	(6.09)	(3.71)	(6.30)	(6.19)
	B3LYP	3.61	-0.14	2.65	-24.07	12.10
Exp.	Gražulis <i>et al</i> . [1]	3.614	-	-	-	-
- T -	Kittel [2]	-	-	3.49	-	-

Table S3. Lattice parameters (a_0 and c_0 , given in Å) and cohesive energies (E_{coh} , given in eV/atom) calculated for Zn with different exchange functionals. Δa_0 , Δc_0 and ΔE_{coh} are differences (%), and defined such that a negative sign indicates that the calculated value is lower than experiment. The MPAE is as defined in the main manuscript.

		a 0	Δa_0	C 0	Δc_0	$E_{\rm coh}$	$\Delta E_{ m coh}$	MPAE
	PBE	2.78	4.59	5.17	4.54	1.09	-19.26	9.46
	(+TS)	(2.71)	(1.93)	(5.04)	(1.88)	(1.51)	(11.70)	(5.17)
	(+MBD-NL)	(2.75)	(3.45)	(5.12)	(3.40)	(1.36)	(0.74)	(2.53)
	PBEsol	2.72	2.20	5.06	2.15	1.59	17.92	7.42
	PBEint	2.78	4.70	5.18	4.65	1.14	-15.41	8.25
GGA	revPBE	2.81	5.79	5.23	5.73	0.78	-42.15	17.89
	PW91	2.84	6.91	5.29	6.85	0.87	-35.55	16.43
	RPBE	2.83	6.27	5.26	6.22	0.72	-46.44	19.46
	R48PBE	2.87	7.81	5.33	7.76	0.69	-48.59	21.38
	B97-D	2.88	8.42	5.36	8.37	0.33	-75.55	30.78
	BLYP	2.88	8.40	5.36	8.34	0.31	-76.96	31.23
	HCTH-407	2.82	6.08	5.25	6.03	0.38	-71.48	27.86
	mBEEF	2.73	2.81	5.09	2.76	1.32	-2.22	2.59
	TPSS	2.73	2.70	5.08	2.66	1.35	0.00	1.78
Meta-	revSCAN	2.75	3.26	5.11	3.21	1.39	2.67	3.04
GGA	SCAN	2.71	1.80	5.04	1.76	1.47	9.26	4.27
	revTPSS	2.70	1.72	5.03	1.67	1.62	20.00	7.79
	TPSSloc	2.67	0.29	4.96	0.24	2.03	50.59	17.03
Hybrid	HSE06	2.78	4.67	5.18	4.62	1.14	-15.40	8.23
	PBE0	2.78	4.54	5.17	4.49	1.14	-15.70	8.24
	(+TS)	(2.71)	(1.93)	(5.04)	(1.88)	(1.54)	(13.70)	(5.84)
	B3LYP	2.85	7.14	5.30	7.09	0.44	-67.55	27.26
Exp.	Gražulis <i>et al</i> . [1]	2.665	-	4.947	-	-	-	-
ълр.	Kittel [2]	-	-	-	-	1.35	-	-

Table S4: MPAE for each density functional when applied to calculate equilibrium bulk structures, and associated cohesive energy, of Pd, Cu and Zn. The results are ordered descending, from best to worst, with respect to the MPAE within each DF approximation sub-category (GGA, meta-GGA, hybrid).

DF		MPAE					
		Pd	Cu	Zn	Mean		
	PBE (+TS) (+MBD-NL)	2.65 (1.61) (1.67)	0.80 (10.22) (5.54)	9.46 (5.17) (2.53)	4.30 (5.67) (3.25)		
	PBEsol PBEint	7.91	9.29	7.42	8.21 9.21		
GGA	revPBE	9.53	5.82	17.89	11.08		
	RPBE	13.31	7.14	16.43 19.46	11.76		
	R48PBE B97-D	17.78 16.58	1.89 10.62	21.38 30.78	13.68 19.33		
	BLYP HCTH-407	13.01 21.36	15.30 12.98	31.23 27.86	19.85 20.73		
	mBEEF TPSS	4.14 6.01	0.93 5.41	2.60 1.78	2.56 4.40		
Meta-GGA	revSCAN SCAN	5.37 6.01	6.72 7.79	3.04 4.27	5.04 6.02		
	revTPSS	6.76	10.76	7.79	8.44		
	HSE06	11.23	4.69	8.23	8.05		
Hybrid	PBE0 (+TS)	12.36 (9.07)	5.21 (6.19)	8.24 (5.84)	8.60 (7.03)		
	B3LYP	19.04	12.10	27.26	19.47		

Facet	Surface energy	Φ	Surface energy	Φ	
	Р	d	Cu		
(111)	1.32	5.17	1.43	4.83	
(100)	1.50	4.99	1.56	4.53	
(110)	1.58	4.80	1.63	4.33	
(332)	1.41	4.99	1.57	4.60	
(322)	1.45	5.00	1.55	4.58	
(221)	1.49	4.61	1.58	4.12	
(210)	1.59	4.92	1.70	4.49	

Table S5. Surface energy (J/m²) and work function (Φ , eV), calculated with the mBEEF density functional, for low- and high-index surfaces of Pd and Cu.

References

- Gražulis S, Chateigner D, Downs RT, Yokochi AF, Quirós M, Lutterotti L, Manakova E, Butkus J, Moeck P, Le Bail A. Crystallography Open Database an open-access collection of crystal structures. *J Appl Crystallogr.* 42, 726–729 (2009).
- [2] Kittel C, Introduction to Solid State Physics, 8th Edition, John Wiley & Sons (2005)