Supplementary Information for

Chemical Dynamics Study on the Gas-Phase Reaction of the D1-Silylidyne Radical (SiD; X²П) with Deuterium Sulfide (D₂S) and Hydrogen Sulfide (H₂S)

Shane J. Goettl,^a Srinivas Doddipatla,^a Zhenghai Yang,^a Chao He,^a Ralf I. Kaiser^{a,*} ^a Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA

Corresponding Author: ralfk@hawaii.edu

Mateus Xavier Silva,^b Breno R. L. Galvão^{b,*} ^b Centro Federal de Educação Tecnológica de Minas Gerais, CEFET-MG, Av. Amazonas 5253, 30421-169 Belo Horizonte, Minas Gerais, Brazil

Corresponding Author: brenogalvao@gmail.com

Tom J. Millar^{c,*}

^c School of Maths and Physics, Queen's University Belfast, University Road, Belfast BT7 1NN, Northern Ireland

Corresponding Author: Tom.Millar@qub.ac.uk

Supplementary Note 1. Pulse Sequence.

An optimized pulse sequence (Figure S1) was used to coordinate the data collection. A 17.0 ± 0.1 cm diameter, four-slot (0.76 ± 0.01 mm) chopper wheel rotating at 120 Hz provided with an infrared photodiode pulse initiated the trigger ($T_0 = 0 \mu s$) for the synchronization of the equipment. The photodiode sent a 480 Hz signal that was divided to 60 Hz and conveyed to three pulse/delay generators (PDG I-III; DG535, Stanford Research Systems). For the SiD/D₂S reaction, the PDG I outputs (+4 V, 50 Ω) AB (A_I = T₀ + 1859 μ s, B_I = A_I + 80 μ s) and CD (C_I = A_I - 22 μ s, D_I = C_I + 80 µs) were sent through a pulse shaper and pulse amplifier (E-421, Physik Instrumente) and were received by the primary and secondary Proch-Trickl¹ pulsed valves, which each contain a piezoelectric disk translator (P-286.23, Physik Instrumente). This allows for a pulsed valve open time of 80 µs when operating at an amplitude of -400 V. The output from PDG I A (TTL, high impedance) was divided to 30 Hz and directed to PDG II and III, which were used for background subtraction. PDG II AB ($A_{II} = A_I + 16654 \ \mu s$, $B_{II} = A_{II} + 5 \ \mu s$) and CD ($C_{II} = A_{II} + 186 \ \mu s$, $D_{II} =$ C_{II} + 5) triggered the flashlamps and Q-switch, respectively, of a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (Quanta-Ray Pro 270, Spectra-Physics) and PDG III AB (AIII = A_{I} + 16666.66 µs, B_{III} = A_{III} + 5 µs) triggered the MCS. For the SiD/H₂S reaction, the delay times were as follows: PDG I AB ($A_I = T_0 + 1868 \ \mu s$, $B_I = A_I + 80 \ \mu s$) and CD ($C_I = A_I - 22 \ \mu s$, $D_I = C_I$ + 80 μ s); PDG II AB (A_{II} = A_I + 16643 μ s, B_{II} = A_{II} + 5 μ s) and CD (C_{II} = A_{II} + 186 μ s, D_{II} = C_{II} + 5); PDG III AB ($A_{III} = A_I + 16666.66 \ \mu s, B_{III} = A_{III} + 5 \ \mu s$).

Figure S1. Pulse sequence for the crossed molecular beam reaction of the D1-silylidyne radical (SiD; $X^2\Pi$) with deuterium sulfide (D₂S) and hydrogen sulfide (H₂S).

Figure S2. Schematic representation of the potential energy surface at the CCSD(T)-F12/aug-cc-pV(T+d)Z//CCSD(T)/aug-cc-pV(T+d)Z) level for the non-deuterated (H₂S+SiH) case including transition states not accessible in our experiments.

Figure S3. Newton circle diagram for the reaction of ground state atomic silicon (Si(³P)) with deuterium sulfide (D₂S) and of the D1-silylidyne radical (SiD; X²Π) with deuterium sulfide (D₂S). The diagram incorporates all reaction pathways below the reaction collision energy of 15.9 kJ mol⁻¹. Each Newton circle has a radius equal to the maximum CM recoil velocity of its corresponding heavy product, and a maximum laboratory angular scattering range for observation of products by the detector.

Figure S4. Newton circle diagram for the reaction of ground state atomic silicon (Si(³P)) with hydrogen sulfide (H₂S) and of D1-silylidyne radical (SiD; X²Π) with hydrogen sulfide (H₂S). The diagram incorporates all reaction pathways below the reaction collision energy of 15.6 kJ mol⁻¹. Each Newton circle has a radius equal to the maximum CM recoil velocity of its corresponding heavy product, and a maximum laboratory angular scattering range for observation of products by the detector.

Figure S5. Optimized potential energy profile as a function of the Si-H bond for a hydrogen loss from **i3** to **p3**. To confirm the barrierless nature of this path obtained by the exploratory M06-2X/cc-pV(T+d)Z calculations (red line), a full valence CASSCF/cc-pV(T+d)Z optimization followed by single point energy refinement at the MRCI(Q)-F12 level² (black line) were performed. The energies are relative to the **i3** optimized structure for each method.

Table S1. Optimized Cartesian coordinates (Å) and vibrational frequencies (cm^{-1}) for all intermediates, transition states, reactants, and products involved in the SiH+H₂S reaction at the CCSD(T)/aug-cc-pV(T+d)Z level. The energies are given for all isotopic substitutions considered in this work at the CCSD(T)-F12/aug-cc-pV(T+d)Z//CCSD(T)/aug-cc-pV(T+d)Z+ZPE(M06-2X/cc-pV(T+d)Z) level in kJ mol⁻¹.

E(D0) – gives the energy of the non-deuterated case

E(D1) – gives the energy for one deuterium at the first position of the Cartesian coordinates

E(D2) – gives the energy for one deuterium at the second position of the Cartesian coordinates E(D3) – gives the energy for one deuterium at the third position of the Cartesian coordinates E(D1,D2,D3) – gives the energy of the fully deuterated case

Species	Vibrational	Relative Energy (kJ		Cartesi	an Coordinates	(Å)
	Frequencies (cm ⁻¹)	mol ⁻¹)	Ato	om X	Y	Z
SiH	2027.38		Н	0.0000000000	0.0000000000	-0.7626723064
			Si	0.0000000000	0.0000000000	0.7626723064
T1 diagnostic:						
0.01362941						
H_2S	1211.38		Н	0.1196696836	0.0000000000	1.2667032628
	2715.39		Н	1.2341510522	0.0000000000	-0.3094033975
	2730.68		S	-0.0810267358	0.0000000000	-0.0572948654
C U						
T1 diagnostic:						
0.01105045						
i1b: HSiSH ₂	174.21	E(D0)=-55.8	Н	0.0003935060	1.0090222955	-1.7724994770
_	238.94	E(D1)=-58.9	Н	0.2609873303	-1.3482916268	1.1494632907
Q	446.28	E(D2)=-57.1	Н	-0.3697756867	-0.8893485662	-1.9052899747
	468.34	E(D3) = -58.5	S	0.4981237979	-0.1131821796	-1.2315483277
	796.91	E(D1,D2,D3)=-58.7	Si	-0.3915017593	0.0288457448	1.0390615819
	1208.04					
I I diagnostic:	1999.73					
0.01489830	2652.97					
	2702.15					
i1a: HSiSH ₂	163.46	E(D0)=-52.5	Н	-0.0015617101	1.4809419224	1.2122198795
_	225.90	E(D1)=-53.8	Н	0.9684244707	0.7933280396	-1.4670774062
	432.76	E(D2)=-55.3	Н	-0.9700785413	0.7912018574	-1.4669068765
	436.28	E(D3)=-55.3	S	0.0001568099	-0.0785599453	-1.1402225695
	722.54	E(D1, D2, D3) = -55.2	Si	0.0003314886	-0.0422403169	1.3297447969
T1 diamati	1206.31					
1 1 diagnostic:	1997.86					
0.014//086	2673.89					
	2679.92					

i2: H ₂ SiSH	233.70	E(D0)=-215.8	Η	-0.0725257577	1.2400496850	-1.7198885632
	513.08	E(D1)=-217.8	Н	0.1391215870	-1.2863381361	1.1445888941
	553.07	E(D2)=-218.3	Н	-0.2081773596	-1.1918438291	-1.8938658389
	682.20	E(D3)=-217.8	S	-0.2467688427	-0.0247930143	0.8992717405
	812.49	E(D1,D2,D3)=-218.3	Si	0.3865775612	-0.0500290377	-1.1509191393
1 I diagnostic:	913.13					
0.01852358	2184.91					
	2229.17					
	2698.40					
i3: H ₃ SiS	429.05	E(D0)=-215.4	Н	-0.7053306888	1.2064166061	-1.6057582649
	495.46	E(D1)=-217.8	Η	-0.7055177224	-1.2064663757	-1.6057202364
e e e e e e e e e e e e e e e e e e e	560.88	E(D2)=-217.8	H	1.3978469431	0.0001254761	-1.5012968320
	920.45	E(D3)=-217.8	S	0.0476275678	-0.0000044712	1.0530729633
	922.13	E(D1,D2,D3)=-218.5	Si	-0.0251973911	-0.0000712355	-1.0877839074
02	972.38					
T1 diagnostic:	2228.05					
0.01299818	2245.06					
	2247.13					
TS: i1a – i1b	167.91 i	E(D0)=-51.0	Н	-0.0123311133	-1.0289923027	-1.7210828235
	220.82	E(D1) = -53.8	Н	-0.4036145457	-1.3040386741	0.9045779622
	418.86	E(D2)=-52.1	Н	-0.4252254333	0.8680813375	-1.7419544033
	457.26	E(D3) = -53.8	S	0.5915338944	0.0987905737	-1.3200351844
	716.51	E(D1,D2,D3)=-53.5	Si	0.2478643861	0.0532047334	1.1576815421
	1202.10					
	2003.06					
	2676.95					
	2711.73					
T1 diagnostic:						
0.01454585						
TS: i1a – i2	704.89 i	E(D0)=-23.9	Η	1.0761229146	-0.1720676996	-0.9023103276
	349.94	E(D1)=-26.7	Η	-0.7688441944	-0.6486134386	-0.0888945962
	402.62	E(D2)=-24.1	Η	0.8694153546	-0.7814042028	1.5894413571
	536.41	E(D3)=-25.5	S	-0.0347175877	0.5575801979	-0.7267120551
	744.64	E(D1,D2,D3)=-24.2	Si	-0.4993555372	-0.1230668568	1.5775944418
T1 diagnostic:	930.92					
11 ulagnostic.	1414.00					
0.01908558	2043.09					
	2706.86					
TS: i1b – i2	665.39 i	E(D0) = -30.3	Н	-0.1581234079	1.1760144278	-1.7294475338
	351.03	E(D1)=-31.9	H	0.2362076436	-1.4070535429	0.8917866757
	480.76	E(D2)=-33.3	H	-0.5435573903	-0.8584828748	-0.8698758097
	523.13	E(D3) = -30.8	S	-0.3825350130	-0.2739811602	0.5255274234
	837.38	E(D1,D2,D3)=-31.1	Si	0.8462353561	0.0505488177	-1.5388036623
	1039.69	(,,,,,,,,,				
	1458.06					
	2039.71					
	2694.48					
T1 diagnostic:						
0.01915692						

TS: i1a – SiSH	1174.19 i	E(D0)=-3.3	Н	-0.1627126861	0.4575626717	-2.0988434848
	332.28	E(D1) = -6.0	Н	0.2137768879	-0.9266738266	-0.4886360802
	361.24	E(D2) = -3.8	Н	-0.3351369496	-1.4120897042	0.2937734088
	618 28	E(D3) = -4.9	S	0 8257018958	0 4269246957	-1 1896799672
	987.42	E(D1 D2 D3) = -3.7	Si	-0 5434019598	0 1413218312	0 7625732166
	1091 37		51	0.0101019090	0.1115210512	0.7023752100
	1/53 78					
T1 diagnostic	1766 21					
0.01532170	2674.02					
TQ: 111 4	20/4.05	E(D0)-22 1	тт	0.001/0/07	0.007(520221	1.527220((14
15:110 - t-	816.291	E(D0)=23.1	Н	-0.0016860697	0.98/6538231	-1.53/2396614
HSISH	208.83	E(D1)=19.9	H	0.3354538983	-1.232/832020	1.361918264/
1	365.75	E(D2)=21.3	Н	-0.5264501878	-1.01/4605390	-2.5129845076
	496.51	E(D3)=25.9	S	0.4616446767	-0.1586981065	-1.0186298335
	609.96	E(D1,D2,D3)=25.1	Sı	-0.2707351293	0.1083336920	0.9861228309
	708.31					
	916.52					
	2051.05					
	2695.95					
T1 diamontia						
1 1 diagnostic:						
0.02953411	005.11		1 77	0.0(454(7141	1 20200 (0774	1.4501100400
1S: 11a - c-	835.111	E(D0)=33.7	H	0.2645467141	-1.2028860//4	1.4591198480
HSISH	224.29	E(D1)=32.0	H	0.8308947216	-1.1168827663	-1.0001363218
	345.35	E(D2)=30.7	H	2.0303767102	0.7203788712	-1.5495965466
	485.56	E(D3)=36.5		0.2557350098	0.0912969574	-0.9377358263
	585.34	E(D1,D2,D3)=35.9	Si	-0.3630780658	0.1421572551	1.1388969768
	715.16					
T1 diagnostic:	801.20					
0.02930655	2046.20					
	2705.70					
TS: i2 – i3	1341.90 i	E(D0)=-119.9	Η	-0.8280755407	1.2332114783	-1.7675479778
	515.82	E(D1)=-122.0	H	-0.8367543593	-1.2335779015	-1.7580963620
	566.72	E(D2)=-122.0	Η	1.3454283731	-0.0037506674	-0.6965108041
	595.20	E(D3)=-119.9	S	0.5398447628	0.0044872355	0.7156201412
	628.29	E(D1,D2,D3)=-120.0	Si	-0.2110145273	-0.0003701452	-1.2409512748
	930.80					
	1710.96					
T1 diagnostic:	2235.65					
0.01427596	2263.05					
TS: i2 – SiSH	1212.81 i	E(D0) = -34.2	н	-0 2389002069	0 7887057229	-1 6180597204
	388 72	E(D1) = -34.8	H	0.3179559118	-1 0120199990	1 4521525533
	477 73	$F(D^2) = 37.0$	н	-0 3719666851	_0.4954450728	-2 1705816073
	500.79	E(D2) = 34.3	C C	-0 4747746828	_0 2376082375	0.6941427582
	662 18	E(D3) = -34.3 E(D1 D2 D2) = 22.5	C:	0.7650128512	-0.2570005575	1 078/668007
	002.40	L(D1, D2, D3)33.3		0.7039120313	-0.3303000438	-1.0/0400000/
	030.70					
T1 diagnostic	1391.31					
0.03228793	1091.91					
0.00220775	1 2085.50	1	1			

TS: i2 – H ₂ SiS	560.50 i 126.59 195.81 610.61 611.15 701.52 996.69 2241.15 2257.05	E(D0)=-36.3 E(D1)=-33.2 E(D2)=-38.5 E(D3)=-38.5 E(D1,D2,D3)=-33.3	H H S Si	-0.0031480161 1.2150637956 -1.2155844270 0.0004609955 0.0001085382	-1.9327522017 -0.1015826553 -0.0977248266 0.0988763472 -0.0201381253	1.9285719718 -1.8482330848 -1.8474330501 0.9482859326 -1.0106728362
TS: i3 – HSiS T1 diagnostic: 0.02758986	972.79 i 438.88 510.13 675.63 879.78 958.69 1519.46 1928.36 2287.49	E(D0)=-45.6 E(D1)=-46.3 E(D2)=-47.9 E(D3)=-46.7 E(D1,D2,D3)=-45.3	H H S Si	0.0134612112 -0.8773267545 0.8748438347 -0.0025648348 0.0010152520	1.0221655240 -1.1131920597 0.5007529830 -0.0334602251 -0.3762662225	-1.7044330334 -1.6882748693 -1.7582971504 1.1721801991 -0.7686614234
H ₂ T1 diagnostic: 0.00601239	4400.22		H H	0.0000000000 0.00000000000000000000000	0.0000000000 0.0000000000000	0.3715191784 -0.3715191784
HSIS T1 diagnostic: 0.03565980	577.18 692.59 2029.11	E(HSiS+H ₂)=-133.9 E(DSiS+H ₂)=-134.8 E(HSiS+HD)=-134.0 E(DSiS+D ₂)=-131.3	H S Si	0.000000000 0.0000000000 0.0000000000	1.2374246601 0.0106422259 -0.0512338506	-1.7921712477 0.9596721427 -1.0060931678
SiSH T1 diagnostic: 0.01827924	510.32 667.54 2630.06	E(SiSH+H ₂)=-114.5 E(SiSD+H ₂)=-116.6 E(SiSH+HD)=-114.6 E(SiSD+D ₂)=-113.1	H S Si	0.000000000 0.0000000000 0.0000000000	1.1799831517 -0.1125267945 0.1293766784	-1.5695610837 -1.1904889181 0.9214577290
H ₂ SiS T1 diagnostic: 0.01747638	614.44 636.23 717.46 1005.81 2236.96 2249.80	E(D0)=-42.3 E(D1)=-44.4 E(D2)=-44.4 E(D1,D2)=-38.7	H H S Si	-0.0022686497 0.0054933914 -0.0048384390 -0.0003070689	1.2202515430 -1.2015802377 0.0264361371 0.0145171489	-1.8556186086 -1.8408225640 0.9542773806 -0.9990731088
t-HSiSH T1 diagnostic: 0.01672500	516.99 626.36 634.15 912.17 2048.92 2683.39	E(D0)=6.0 E(D1)=3.0 E(D2)=4.2 E(D1,D2)=9.1	H H S Si	-1.1009437415 1.2741902382 0.1788465601 -0.2184420568	0.000000000 0.000000000 0.000000000 0.000000	2.4062455267 -0.3788405158 1.9996623518 -0.0951663628

c-HSiSH	507.66	E(D0)=15.7	Η	-0.0000960212	1.2924313596	-1.2088926370
	536.78	E(D1)=13.0	Н	0.0004095851	1.4406316565	1.3034694552
	662.19	E(D2)=14.1	S	-0.0003580214	-0.0310749324	-0.9922990305
	807.13	E(D1,D2)=19.1	Si	0.0000265565	-0.0702965394	1.1528746985
	2045.24					
T1 diagnostic:	2696.53					
0.01699851						

	Orion Hot Core	Orion Plateau	Orion 15.5 km s ⁻¹ component
n(H ₂) cm ⁻³	5 × 10 ⁷	106	5×10^{6}
Т (К)	225	125	200
$N(H_2) \text{ cm}^{-2}$	4.2×10^{23}	2.1 × 10 ²³	10 ²³

Table S2. Physical parameters adopted for the Orion sources.

		$D_2{}^{32}S$	$D_2^{33}S$	$D_2^{34}S$	$D_2^{36}S$
Si +	D_2S	(94.93%)	(0.76%)	(4.29%)	(0.02%)
		36	37	38	40
	²⁸ Si (92.23%)	²⁸ Si ³² SD	²⁸ Si ³³ SD	²⁸ Si ³⁴ SD	²⁸ Si ³⁶ SD
	28	62	63	64	66
DLaga	²⁹ Si (4.68%)	²⁹ Si ³² SD	²⁹ Si ³³ SD	²⁹ Si ³⁴ SD	²⁹ Si ³⁶ SD
D Loss	29	63	64	65	67
	³⁰ Si (3.09%)	³⁰ Si ³² SD	³⁰ Si ³³ SD	³⁰ Si ³⁴ SD	³⁰ Si ³⁶ SD
	30	64	65	66	68
	²⁸ Si (92.23%)	²⁸ Si ³² S	²⁸ Si ³³ S	²⁸ Si ³⁴ S	²⁸ Si ³⁶ S
	28	60	61	62	64
DLaga	²⁹ Si (4.68%)	²⁹ Si ³² S	²⁹ Si ³³ S	²⁹ Si ³⁴ S	²⁹ Si ³⁶ S
D_2 Loss	29	61	62	63	65
	³⁰ Si (3.09%)	³⁰ Si ³² S	³⁰ Si ³³ S	³⁰ Si ³⁴ S	³⁰ Si ³⁶ S
	30	62	63	64	66

Table S3. D and D₂ loss product mass combinations of silicon and sulfur isotopes from the reaction of ground state atomic silicon (Si(³P)) and deuterium sulfide (D₂S; X¹A₁). Isotope abundance given in parenthesis.

Table S4. H and H ₂ loss product mass combinations of silicon and sulfur isotopes f	rom the
reaction of ground state atomic silicon (Si(³ P)) and hydrogen sulfide (H ₂ S; X ¹ A ₁). Is	sotope
abundance given in parenthesis.	

Ci 1	цс	H ₂ ³² S (94.93%)	H ₂ ³³ S (0.76%)	H ₂ ³⁴ S (4.29%)	H ₂ ³⁶ S (0.02%)
SI + Π ₂ S		34	35	36	38
	²⁸ Si (92.23%)	²⁸ Si ³² SH	²⁸ Si ³³ SH	²⁸ Si ³⁴ SH	²⁸ Si ³⁶ SH
	28	61	62	63	65
	²⁹ Si (4.68%)	²⁹ Si ³² SH	²⁹ Si ³³ SH	²⁹ Si ³⁴ SH	²⁹ Si ³⁶ SH
H LOSS	29	62	63	64	66
	³⁰ Si (3.09%)	³⁰ Si ³² SH	³⁰ Si ³³ SH	³⁰ Si ³⁴ SH	³⁰ Si ³⁶ SH
	30	63	64	65	67
	²⁸ Si (92.23%)	²⁸ Si ³² S	²⁸ Si ³³ S	²⁸ Si ³⁴ S	²⁸ Si ³⁶ S
	28	60	61	62	64
	²⁹ Si (4.68%)	²⁹ Si ³² S	²⁹ Si ³³ S	²⁹ Si ³⁴ S	²⁹ Si ³⁶ S
H ₂ LOSS	29	61	62	63	65
	³⁰ Si (3.09%)	³⁰ Si ³² S	³⁰ Si ³³ S	³⁰ Si ³⁴ S	³⁰ Si ³⁶ S
	30	62	63	64	66

abundance given in parentnesis.							
C:D			D ₂ ³³ S (0.76%)	D ₂ ³⁴ S (4.29%)	D ₂ ³⁶ S (0.02%)		
3ID -	F D ₂ 3	36	37	38	40		
	²⁸ SiD (92.23%)	²⁸ Si ³² SD ₂	²⁸ Si ³³ SD ₂	²⁸ Si ³⁴ SD ₂	²⁸ Si ³⁶ SD ₂		
	30	64	65	66	68		
Dlass	²⁹ SiD (4.68%)	²⁹ Si ³² SD ₂	²⁹ Si ³³ SD ₂	²⁹ Si ³⁴ SD ₂	²⁹ Si ³⁶ SD ₂		
DLOSS	31	65	66	67	69		
	³⁰ SiD (3.09%)	³⁰ Si ³² SD ₂	³⁰ Si ³³ SD ₂	³⁰ Si ³⁴ SD ₂	³⁰ Si ³⁶ SD ₂		
	32	66	67	68	70		
	²⁸ SiD (92.23%)	²⁸ Si ³² SD	²⁸ Si ³³ SD	²⁸ Si ³⁴ SD	²⁸ Si ³⁶ SD		
	30	62	63	64	66		
Dlass	²⁹ SiD (4.68%)	²⁹ Si ³² SD	²⁹ Si ³³ SD	²⁹ Si ³⁴ SD	²⁹ Si ³⁶ SD		
$D_2 LOSS$	31	63	64	65	67		
	³⁰ SiD (3.09%)	³⁰ Si ³² SD	³⁰ Si ³³ SD	³⁰ Si ³⁴ SD	³⁰ Si ³⁶ SD		

Table S5. D and D₂ loss product mass combinations of silicon and sulfur isotopes from the reaction of the D1-silylidyne radical (SiD; $X^2\Pi$) and deuterium sulfide (D₂S; X^1A_1). Isotope abundance given in parenthesis.

$SiD + H_2S$		H ₂ ³² S (94.93%)	H ₂ ³³ S (0.76%)	H ₂ ³⁴ S (4.29%)	H ₂ ³⁶ S (0.02%)
		34	35	36	38
	²⁸ SiD (92.23%)	²⁸ Si ³² SHD	²⁸ Si ³³ SHD	²⁸ Si ³⁴ SHD	²⁸ Si ³⁶ SHD
	30	63	64	65	67
111.000	²⁹ SiD (4.68%)	²⁹ Si ³² SHD	²⁹ Si ³³ SHD	²⁹ Si ³⁴ SHD	²⁹ Si ³⁶ SHD
	31	64	65	66	68
	³⁰ SiD (3.09%)	³⁰ Si ³² SHD	³⁰ Si ³³ SHD	³⁰ Si ³⁴ SHD	³⁰ Si ³⁶ SHD
	32	65	66	67	69
	²⁸ SiD (92.23%)	²⁸ Si ³² SH ₂	²⁸ Si ³³ SH ₂	²⁸ Si ³⁴ SH ₂	²⁸ Si ³⁶ SH ₂
	30	62	63	64	66
Diass	²⁹ SiD (4.68%)	²⁹ Si ³² SH ₂	²⁹ Si ³³ SH ₂	²⁹ Si ³⁴ SH ₂	²⁹ Si ³⁶ SH ₂
DLOSS	31	63	64	65	67
	³⁰ SiD (3.09%)	³⁰ Si ³² SH ₂	³⁰ Si ³³ SH ₂	³⁰ Si ³⁴ SH ₂	³⁰ Si ³⁶ SH ₂
	32	64	65	66	68
	²⁸ SiD (92.23%)	²⁸ Si ³² SD	²⁸ Si ³³ SD	²⁸ Si ³⁴ SD	²⁸ Si ³⁶ SD
	30	62	63	64	66
	²⁹ SiD (4.68%)	²⁹ Si ³² SD	²⁹ Si ³³ SD	²⁹ Si ³⁴ SD	²⁹ Si ³⁶ SD
$\Pi_2 LOSS$	31	63	64	65	67
	³⁰ SiD (3.09%)	³⁰ Si ³² SD	³⁰ Si ³³ SD	³⁰ Si ³⁴ SD	³⁰ Si ³⁶ SD
	32	64	65	66	68
	²⁸ SiD (92.23%)	²⁸ Si ³² SH	²⁸ Si ³³ SH	²⁸ Si ³⁴ SH	²⁸ Si ³⁶ SH
	30	61	62	63	65
	²⁹ SiD (4.68%)	²⁹ Si ³² SH	²⁹ Si ³³ SH	²⁹ Si ³⁴ SH	²⁹ Si ³⁶ SH
	31	62	63	64	66
	³⁰ SiD (3.09%)	³⁰ Si ³² SH	³⁰ Si ³³ SH	³⁰ Si ³⁴ SH	³⁰ Si ³⁶ SH
	32	63	64	65	67

Table S6. H, D, H₂, and HD loss product mass combinations of silicon and sulfur isotopes from the reaction of the D1-silylidyne radical (SiD; $X^2\Pi$) and hydrogen sulfide (H₂S; X¹A₁). Isotope abundance given in parenthesis.

Source	Light Grey	Dark Grey	Light Grey
Orion Hot Core	$(1.8-5.4) \times 10^{-10}$	$(5.4 - 8.8) \times 10^{-10}$	$(8.8-26.4) \times 10^{-10}$
Orion Plateau	$(0.43 - 1.29) \times 10^{-9}$	$(1.29-2.05) \times 10^{-9}$	$(2.05-6.14) \times 10^{-9}$
Orion 15.5 km s ⁻¹	$(1.76-5.3) \times 10^{-9}$	$(5.3-8.7) \times 10^{-9}$	$(8.7-26.1) \times 10^{-9}$

Table S7. Fractional abundance ranges for SiS in the Orion Sources shown in Figure 13.

References

- 1. D. Proch and T. Trickl, *Review of Scientific Instruments*, 1989, **60**, 713-716.
- 2. T. Shiozaki, G. Knizia and H.-J. Werner, *The Journal of Chemical Physics*, 2011, **134**, 034113.