ARTICLE

Supplementary Information

Investigation of Al(TfO)₃ based deep eutectic solvent electrolytes for aluminium-ion battery. Part I: Understanding positive Al complex formation⁺

Willi Peters,^a Huong Thu Duong,^a Soobin Lee^a and Jean-Francois Drillet^{a,*}

^a DECHEMA Research Institute, Batteries & Fuel Cells, 60486 Frankfurt am Main, Germany; * E-mail: jean.drillet@dechema.de

Physical properties of electrolyte components:

 Table S1 – Physical properties of all electrolyte components; * solid at room temperature; ** decomposition temperature; *** 70% urea mixture with water. The following

 literature has been used: (a) Merck, Safety data sheet CAS:607-194-00-1; (b) E. AVCI: J. Inno Sci Eng 1 (2017) 25; (c) S. C. DeVito et al., Encyclopedia of Chemical Technology. (1999-2014). John Wiley & Sons; (d, f) J. A. Riddich et al. Techniques of Chemistry 4, 2 (1985), 658; (e) S. Halonen et al. Emiss. Control Sci. Technol. 3, (2017), 161-170

Used electrolyte components	Molar Mass	Melting point	Boiling point	Viscosity at 20 °C	
(incl. abbreviations)	g mol⁻¹	°C	°C	mPas	
Propylene carbonate (PC)	102.09	- 48.8	242	2.51 (@25 °C) ^(a)	
Formamide (FA)	45.04	2	210	3.75 ^(b)	
Acetonitrile (ACN)	41.05	- 45	82	0.36 ^(c)	
N-Methylacetamide (NMA or N)	73.09	27 - 30	206 - 208	3.01 (@ 40°C)* ^(d)	
Urea (U)	60.06	133 **	133 **	1.23 (@80°C)*** ^(e)	
Acetamide (AcAm or A)	59.07	65 - 81	222 **	2.182 (@91.1°C) * ^(f)	
Aluminiumtrifluoromethanesulfonate	474.19	300	-	-	
(Al(TfO)₃ or AT)					

Water content determination via volumetric Karl-Fischer titration:

Table S2 – Water content determination of single components and Al(TfO)₃-free mixtures via Karl-Fischer-Titration; * Component dried with molecular sieve

Components	Composition	Measured water content	
(incl. abbreviations)	%	ppm	%
NMA*		101	0.010
FA*		29	0.003
PC *		19	0.002
NMA* / Urea		999	0.100
NMA* / Urea*		25	0.002
NMA*/AcAm		1412	0.141
NMA*/AcAm*		113	0.011
FA* /Urea*		255	0.025

All solvents were dried down to 100 ppm and below by using a molecular sieve. Drying of the hygroscopic urea and acetamide with a molecular sieve reduced water amount significantly from 999 to 25 ppm and from 1412 to 113 ppm, respectively. Volumetric KFT technique is, however, unsuitable for mixtures containing $Al(TFO)_3$ salt since the latter reacts with the titration substance iodine.

Full Raman spectrum:

Figure S1 – Raman spectra of all FA-based single components as well as binary and ternary mixtures corresponding to Fig. 5b with an increased measurement range from 100 to 2400 cm⁻¹

Raman measurement summary: TfO peak positions

Table S3 – Summary of SO₃ and CF₃ peak positions for single. binary and ternary electrolyte mixtures determined via Raman spectroscopy; Prominent peaks intensity are printed in bold; ^aACN and PC are partially immiscible with urea – inhomogeneous mixtures were measured nonetheless; ^bmixture with urea/AT ratio of 6:1. all other ternary mixtures were measured at a ratio of 4:1; Peak position is correlated to single-charged (*) or twofold-charged (#) positive Al-ion complex.

		,	•		0	0 . ,		0
		SO ₃ cm ⁻¹				CF ₃ cm ⁻¹		
		solid	(#)	(*)	(#)	solid	(*)	(#)
-	Al(TfO)₃	1070	-	-	-	778	-	-
VII	NMA / AI(TfO) ₃	-	-	1032	-	-	761	-
v	NMA / Al(TfO)₃ / Urea	-	1041	1032	-	-	761	732
Т	NMA / Al(TfO) ₃ / AcAm	-	-	1032	-	-	761	
VIII	FA / AI(TfO)₃	-	-	1032	-	-	761	734
IX	FA / Al(TfO)₃ / Urea	-	-	1032	999	-	761	734
х	FA / Al(TfO) $_3$ / Urea b	-	-	-	999	-	-	734
XI	ACN / AI(TfO)₃	-	-	-	-	-	-	734
-	ACN / Al(TfO) ₃ / Urea ^a	-	-	1032	-	-	761	734
XII	PC / AI(TfO) ₃	-	-	1032	-	-	761	-
-	PC / Al(TfO) ₃ / Urea ^a	-	-	1032	-	-	761	-

The comparison of CF_3 and SO_3 peaks in the Raman spectra shows a clear trend to lower wave numbers for all measured electrolytes.

Raman spectra of NMA/AcAm mixtures with $Al(NO_3)_3$ or $Al(TfO)_3$ salt:

Figure S2 – Raman spectra of electrolytes containing Al(TfO)₃ a/o Al(NO₃)₃: Black: NMA/Al(TfO)₃/Al(NO₃)₃/AcAm; Red: NMA/Al(TfO)₃/AcAm; Blue: NMA/Al(TfO)₃/AcAm;

Nitrate containing DES depicts a clear peak at higher wave numbers, due to their stronger association to the Al-ion. This is supported by NMR data, where an aqueous $Al(NO_3)_3$ solution was used as reference.

Temperature dependence of binary and ternary electrolytes: