Supporting information for

Elucidating the structure, redox properties and active entities of high-temperature thermal aged CuO_x-CeO₂ catalysts for CO-PROX

Zhihuan Qiu^a, Xiaolin Guo^b, Jianxin Mao^a, Renxian Zhou^{a, *}

^a Institute of Catalysis, Zhejiang University, Hangzhou 310028, P.R China

^b College of Materials and Chemistry, China Jiliang University, Hangzhou 310018,

P.R China

*Corresponding author: Renxian Zhou Tel. and fax: +86 571 88273283.

E-mail address: <u>zhourenxian@zju.edu.cn</u>.

Fig. S1 Catalytic performance of 0.1 g α -Al₂O₃ for CO-PROX (blank experiment).

Fig. S2 Catalytic performance of 7CuCe catalyst under 50 h CO-PROX reaction at 80

 ^{o}C with $H_{2}O$ or/and CO_{2} added.

Catalyst	Copper content (wt%)		
1CuCe	0.7		
2CuCe	1.2		
5CuCe	3.3		
7CuCe	4.8		
10CuCe	7.1		
15CuCe	11.2		

Table S1 Copper content of the CuO_x -CeO₂ catalysts analyzed by ICP-AES.

	Weight percentage	Lattice peremeter		Microstrain ^a
Catalyst	of crystalline CuO	of CoO (Å)	Grain size ^a (Å)	
	phase (%)	of $CeO_2(A)$		(10^{-5})
7CuCe-200	0.4	5.4104	38.0/32.7/36.2	10.4/5.70/9.46
7CuCe-300	0.2	5.4121	42.3/39.1/41.4	8.14/4.55/7.41
7CuCe-400	0.3	5.4128	51.9/49.8/51.3	5.46/3.19/4.99
7CuCe-500	0.5	5.4127	63.8/62.6/63.4	3.98/2.77/3.72
7CuCe-600	0.9	5.4123	77.4/76.8/77.2	2.62/1.95/2.47
7CuCe-700	4.3	5.4100	139/153/142	1.07/1.93/1.33

Table S2 Structure parameters of the CuO_x -CeO₂ catalysts with 7% Cu content and

different calcination temperature.

^aThe crystalline size and microstrain of the three crystal planes of CeO_2 basic grain, which are {111}, {100} and {110} from left to right.

Fig. S3 N_2 adsorption-desorption isotherms (a) and BJH desorption pore size

distribution curves (b) of the CuO_x -CeO₂ catalysts with different copper content.

Fig. S4 O 1s XPS spectra of the CuO_x -CeO₂ catalysts.

	Peak α		Peak β		Peak γ		Total H ₂	Theoretical H ₂
Catalyst	Tem.	H_2 cons.	Tem.	H_2 cons.	Tem.	H ₂ cons.	cons.	cons. by Cu ²⁺
	(°C)	(µmol g ⁻¹)	(°C)	(µmol g ⁻¹)	(°C)	(µmol g ⁻¹)	(µmol g ⁻¹)	(µmol g ⁻¹)
1CuCe	148	105	176	185	-	-	290	157
2CuCe	148	178	172	255	-	-	433	315
5CuCe	141	238	164	608	-	-	846	787
7CuCe	142	192	161	315	170	468	975	1102
10CuCe	142	157	164	352	178	948	1457	1574
15CuCe	146	114	177	760	199	1149	2023	2360

Table S3 Reduction temperature and $\rm H_2$ consumption of H_2-TPR peaks, $\rm T_{50\%}$ and

operation temperature window of the CuO_x -CeO₂ catalysts.

Fig. S5 CO-TPR profiles of the CuO_x -CeO₂ catalysts with different copper content.

Fig. S6 *In situ* DRIFTs spectra at 1000-1900 cm⁻¹ region of (a) 1CuCe, (b) 2CuCe, (c) 5CuCe, (d) 7CuCe, (e) 10CuCe and (f) 15CuCe under the H_2 +CO+O₂+Ar reaction

stream.

Fig. S7 In situ DRIFTs spectra at 2300-3800 cm⁻¹ region of (a) 1CuCe, (b) 2CuCe, (c)

5CuCe, (d) 7CuCe, (e) 10CuCe and (f) 15CuCe under the H₂+CO+O₂+Ar reaction

stream.