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1. Definition of the air-water interface 

 

Fig. S1. Density profile of water molecules in the 191 H2O nanodroplet with OH* being initially 

placed in the interior region (red) and in the surface region (blue). The vertical dashed line located 

at 10.2 Å which corresponds to half of the bulk water density is defined as the air-water interface. 
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2. The deformation of water nanodroplet 

        Deformation (D) is defined as: 

D =
𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛

𝑅𝑎𝑣𝑒
 

where Rmax, Rmin, and Rave are the maximum, minimum, and average distances between the droplet 

center and surface water molecules. As shown in Figure S2, trajectory Ssur undergoes a larger 

deformation compared to trajectory Sint. 

 

Fig. S2. The deformation of the water droplet versus simulation time for trajectory Ssur and Sint.  
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3. Atomic charges on the hydroxyl radical 

 

Fig. S3. The Mulliken and Hirshfeld charges of O* and H* in the hydroxyl radical. 
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4. Geometric criteria in defining hemibond 

 

Fig. S4. (a) Schematic view of using the O*-O distance RO*O, the OH* tilt angle , and the O*-O 

azimuthal angle  to define hemibonded structures. Geometric criteria for OH* in the bulk are 

taken from ref. 21 (see main text). (b) Joint probability distribution P(, ) and (c) Joint probability 

distribution P(RO*O, ) computed for trajectory Sint from 30 ps to 125 ps. (Distribution plots for 

Ssur are very similar, which are not shown in here.) 
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5. dO*-O versus time when simulated at the B3LYP-D3 level 

 

Fig. S5. The distance between O* and its closest oxygen atom. Distances corresponding to 

hemibonded-configurations with one, two, and three H-atom donors to O* are colored in green, 

blue, and red respectively. Distances corresponding to those without hemibond are colored in Kelly 

green. 
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6. Hydrogen bond statistics for OH* complex at the surface 

 

 

Fig. S6. The percentage of different numbers of hydrogen bonds connecting to O* with (left) or 

without (right) a hemibond for trajectory Ssur from 0 to 30 ps. r(H*..O) denotes the ratio of 

configurations where H* forms a hydrogen bond with water oxygen. 
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7. dO*-O versus time when simulated using TZVP basis 

 

Fig. S7. The distance between O* and its closest oxygen atom. Distances corresponding to 

hemibonded-configurations with one, two, and three H-atom donors to O* are colored in green, 

blue, and red respectively. Distances corresponding to those without hemibond are colored in Kelly 

green. 
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8. P(, ) for water oxygen atoms and water hydrogen atoms among hemibonded structures 

 

Fig. S8. Joint probability distributions P(, ) computed for water oxygen atoms and water 

hydrogen atoms that are hydrogen-bonded or hemibonded to OH* are depicted in (a) and (b) for 

OH* in the subsurface layer with 2 and 3 hydrogen bond donors to the hemibonded O* atom, (c) 

and (d) for OH* in the interior region with 2 and 3 hydrogen bond donors to the hemibonded O* 

atom, respectively. The plot is based on a Cartesian coordinate with Z axis being the vector 𝑟𝑂∗𝐻∗, 

and X axis being the vector on the H*-O*-O plane and is simultaneously perpendicular to Z axis. 

 is the angle from Z axis to vector 𝑟𝑂∗𝑂 or 𝑟𝑂∗𝐻, and  is the angle from X axis to the projection 

of vector 𝑟𝑂∗𝑂 or 𝑟𝑂∗𝐻 onto the X-Y plane.  
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9. The fitting of C(t) 

 

Fig. S9. The correlation function C(t) and its corresponding biexponential fit of (OH*)O
*-O(H2O) 

(hemibond), (OH*)O
*-H(H2O) (OH*-involved hydrogen bonds) and (H2O)O-H(H2O) (hydrogen bonds 

among water molecules only) for trajectory Ssur (solid curve) and Sint (dashed curve), respectively. 

For the C(t) of (OH*)O
*-O(H2O), the biexponential fit gives 1 = 0.2 ps, 2 = 1.9 ps for Ssur, and 1 = 

0.6 ps, 2 = 4.4 ps for Sint. For the C(t) of (OH*)O
*-H(H2O), the biexponential fit gives 1 = 0.5 ps, 2 

= 5.8 ps for Ssur, and 1 = 1.6 ps, 2 = 17.9 ps for Sint. For the C(t) of (H2O)O-H(H2O), the biexponential 

fit gives 1 = 0.5 ps, 2 = 7.1 ps for Ssur, and 1 = 1.3 ps, 2 = 9.6 ps for Sint. 
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10. Snapshots for HT3 and HT4 

 

 

Fig. S10. The evolution of the molecular configurations and the spin density (yellow isosurfaces: 

+0.0005 e/Å3; blue isosurfaces: -0.02 e/Å3) during hydrogen transfer reactions. (a) to (d) and (e) 

to (h) correspond to HT3 and HT4, respectively. Bond lengths and bond orders of interest are 

labelled.  
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11. The free energy barrier of hydrogen transfer reaction 

 

Fig. S11. The free energy barrier of the hydrogen transfer reaction between OH* and a neighboring 

molecule. Slow-growth free energy simulations was used, with coordinate R being the difference 

between the O-H and O*-H distances. 


