Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2021

SUPPORTING INFORMATION

Evaluation of Packing Single and Multiple Atoms and Molecule in the Porous Organic

Cage CC3-R

Nida A. McKee and Michael L. McKee*

Department of Chemistry and Biochemistry, Auburn, AL 36849 USA

Table S1. 3 pages Table S2. 3 pages Table S3. 251 pages

PO	G M06-2	X/	B3LYP/6-31G(d,p)-D3BJ//M06-2X/6-31G(d)						
	6-31G((d)			-				
	ΔΕ	BSSE/2	ΔE^+	ΔH	ΔG	ΔG	ΔG	ΔG	
СЦ Т			BSSE/2	<u>(298K)</u>	(100K)	(200K)	<u>(300K)</u>	<u>(400K)</u>	
U_{14} I I	1								
V_2	V								
AC N									
	h								
C_2H_2 D	h								
H ₂ O									
SF_6 O	n								
5-'Bu- <i>m</i> -xylene C	3								
CC3-R 1									
Xe@CC3 T	-7.73	2.39	-10.66	-10.33	-8.56	-6.79	-5.02	-3.24	
3Xe@CC3 C	-6.44	2.04	-7.68	-7.41	-5.25	-3.09	-0.92	1.24	
4Xe@CC3 T	-6.64	1.53	-8.17	-8.42	-6.27	-4.13	-1.98	0.17	
4Xe@CC3 C	-6.66	1.53	-8.17	-7.88	-5.67	-3.45	-1.24	0.97	
5Xe@CC3 T	-5.85	1.50	-7.66	-7.69	-5.31	-2.93	-0.55	1.82	
5Xe@CC3 C	-5.88	1.49	-7.65	-7.27	-5.06	-2.84	-0.63	1.59	
Kr@CC3 T	-4.40	1.24	-6.75	-6.42	-4.15	-1.88	0.39	2.67	
4Kr@CC3 T	-4.45	0.94	-6.04	-5.81	-3.62	-1.43	0.76	2.95	
5Kr@CC3 1	-3.85	0.89	-5.56	-5.25	-3.15	-1.04	1.07	3.17	
SF ₆ @CC3-TS C	-4.04	2.38	-6.49	-7.10	-4.35	-1.60	1.15	3.91	
$SF_6 a CC3-TS$ C	-6.07	3.53	-7.91	-7.08	-4.16	-1.24	1.69	4.61	
$SF_6 @CC3$ T	-9.74	4.53	-15.32	-14.25	-11.90	-9.56	-7.21	-4.86	
$4SF_6@CC3$ T	-9.31	4.97	-10.80	-9.47	-5.82	-2.18	1.47	5.12	
5SF ₆ @CC3 T	-10.0	7 4.31	-13.64	-12.72	-9.57	-6.41	-3.26	-0.10	
$5SF_6 @CC3$ C	-10.2	5 4.31	-13.27	-11.92	-8.52	-5.12	-1.73	1.67	
$(SF_6)_4^{h}$ T	-0.93	0.57	-1.18	-0.33	0.71	1.75	2.79	5.02	
$(SF_6)_{5^h}$ D	-1.96	1.30	-1.47	-0.67	0.97	2.61	4.25	5.89	
$(SF_6)_5^h$ C	-1.99	1.30	-1.47	-0.54	1.29	3.12	4.96	6.79	
СН ₄ @ССЗ Т	-3.02	0.73	-5.24	-5.79	-4.33	-2.86	-1.40	0.07	
$CH_4 @CC3$ C	-4.40	1.02	-5.52	-4.24	-2.58	-0.91	0.75	2.42	
$3CH_4@CC3$ C	-4.66	0.99	-5.99	-4.85	-2.64	-0.42	1.80	4.01	
$4CH_4 @CC3-a$ T	-4.57	1.01	-6.02	-5.74	-3.62	-1.50	0.62	2.74	
4CH ₄ @ CC3 -b T	-4.67	0.98	-5.96	-4.78	-2.39	-0.01	2.38	4.76	
$5CH_4 @CC3$ T	-5.10	0.92	-5.88	-5.06	-2.10	0.86	3.82	6.78	
$5CH_4@CC3$ C	-5.11	0.92	-5.87	-4.65	-2.24	0.17	2.58	4.99	
6CH ₄ @ CC3 T	-1.98	0.96	-1.32	-0.71	2.31	5.33	8.35	11.37	
6CH4@ CC3	-2.00	0.96	-1.33	-0.01	2.87	5.74	8.74	11.49	
CH ₄ @CC3 T	-3.02	0.73	-5.24	-5.79	-4.33	-2.86	-1.40	0.07	
$CO_2(a)$ CC3- a C	-6.06	1.42	-8.88	-9.18	-7.30	-5.42	-3.54	-1.66	
$CO_2 @ CC3-b$	-7.02	1.81	-6.51	-5.51	-3.13	-0.75	1.62	4.00	
4CO ₂ @CC3-a	-7.57	1.70	-8.46	-7.69	-4.80	-1.91	0.98	3.88	
4CO ₂ @CC3-b	-8.63	1.67	-8.43	-7.51	-4.45	-1.40	1.65	4.70	
6CO ₂ @CC3-a	-6.65	1.86	-5.65	-5.42	-1.97	1.49	4.95	8.40	
6CO ₂ @CC3-b	-8.29	1.71	-7.86	-7.15	-3.87	-0.58	2.71	6.00	
6CO ₂ @CC3-c C	-8.97	1.66	-8.64	-7.73	-4.49	-1.26	1.97	5.20	

 Table S1.
 More complete Table 1 with Point Groups, Relative Energies (kcal/mol), Enthalpies (kcal/mol), and Free Energies (kcal/mol) with Respect to CC3-R and Varies Encapsulated Species per Unit^a

$\overline{(CO_2)_4^e}$	S_4	-2.88	1.37	-1.34	-0.72	1.04	2.80	4.56	6.33
$(CO_2)_6$ -a ^e	T_h	-3.08	0.91	-2.45	-1.75	0.49	2.74	4.98	7.22
$(CO_2)_6$ -b ^e	C_1	-3.47	0.91	-2.40	-1.68	0.52	2.73	4.94	7.12
$(CO_2)_6$ -c ^e	S_6	-3.85	0.74	-2.97	-2.26	0.04	2.34	4.64	6.94
$(C_{2}H_{2})@CC3$	C_2	-5.67	1.63	-7.08	-6.14	-4.27	-2.39	-0.52	1.35
$(C_2H_2)_4 @ CC3$	C_2	-7.82	1.49	-9.70	-8.62	-5.73	-2.85	0.04	2.93
$(C_2H_2) \neq @CC3$	\mathbf{C}_{2}^{2}	-3.28	1.49	-3.98	-3.15	-0.09	2.96	6.01	9.07
$(C_2H_2)_{4}^{f}$	S₄	-2.35	0.56	-2.35	-2.01	-0.25	1.50	3.26	5.02
$(C_2H_2)_4^{f}$	C_1	-2.35	0.55	-2.42	-1.76	-0.19	1.38	2.95	4.52
$(C_2H_2)_6^{f}$	C_3	-2.39	0.74	-3.01	-2.26	-0.37	1.52	3.41	5.30
H ₂ O@ CC3	C_1	-12.94	3.14	-11.52	-9.44	-6.76	-4.08	-1.40	1.28
6H ₂ O@CC3	$\dot{C_1}$	-16.83	1.31	-17.00	-15.11	-11.65	-8.20	-4.75	-1.29
8H ₂ O@CC3	$\dot{C_1}$	-17.13	1.27	-17.19	-15.35	-11.70	-8.05	-4.40	-0.76
$12\ddot{H}_2O@CC3$	C_3	-18.53	1.54	-18.31	-16.35	-12.62	-8.89	-5.16	-1.43
$(H_2O)_6^g$	$\tilde{C_1}$	-12.38	1.84	-11.25	-9.54	-6.85	-4.15	-1.45	1.24
$(H_2O)_8^g$	D_{2d}	-14.28	1.87	-13.53	-11.79	-8.82	-5.86	-2.89	0.08
$(H_2O)_{12}^{g}$	D_3^{2u}	-14.60	1.71	-14.04	-12.29	-9.19	-6.09	-2.09	0.11
$(\mathbf{CC3-R})_2$ w-to-w ^b	D_3	-25.17	7.64	-33.95	-32.28	-26.39	-20.50	-14.61	-8.72
$(\mathbf{CC3-R})_2$ w-to-a ^b	$\tilde{C_3}$	-20.75	5.06	-30.27	-29.21	-25.31	-21.41	-17.51	-13.62
$(\mathbf{CC3-}R)_2$ a-to-a ^b	$\tilde{D_3}$	-14.19	5.26	-23.08	-24.02	-20.20	-16.37	-12.55	-8.72
CC3-R/S w-to-w ^b	\mathbf{S}_{6}	-29.41	7.26	-39.75	-38.03	-33.12	-28.21	-23.30	-18.39
Xe@w-to-w-a ^c	$\tilde{C_3}$	-8.13	2.44	-10.97	-10.47	-8.72	-6.96	-5.21	-3.46
Xe@w-to-w TS	$\tilde{C_3}$	-6.38	1.87	-9.39	-10.01	-7.46	-4.91	-2.36	0.19
Xe@w-to-w-b ^d	$\tilde{D_3}$	-7.44	1.87	-10.86	-10.54	-8.52	-6.49	-4.47	-2.44
3Xe@w-to-w	D_3	-8.06	1.89	-10.74	-10.45	-8.38	-6.31	-4.25	-2.18
Xe@w-to-w(R/S)	\mathbf{S}_6	-8.22	2.01	-11.51	-11.35	-9.44	-7.53	-5.62	-3.71
Diphenylether	C_2								
Dimesitylether	C_2								
Octachloropropane	C_{2v}								
Hexachloropropene	C _s								
Benzylbenzoate	C_1								
Tetrachloroethene	D_{2h}								
15-Crown-5 ⁱ	D_5	10.90		8.47	6.35	8.59	10.83	13.08	15.32
15-Crown-5 ⁱ	C_1	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Mesitylene	C_{3v}								
HCCl ₃ @CC3	C_1	-11.35	2.27	-16.70	-15.34	-12.41	-9.48	-6.55	-3.62
Diphenylether@CC3	C_2	-12.74	6.34	-13.73	-12.61	-7.01	-1.40	4.21	9.82
Dimesitylether@CC3	C_2	19.61	7.71	14.51	16.58	24.25	31.91	39.58	47.24
Octachloropropane@CC3	C_1	4.73	4.54	0.90	1.15	6.40	11.66	16.91	22.17
Hexachloropropene@CC3	C_1	-10.44	4.26	-14.92	-14.04	-9.10	-4.16	0.78	5.72
Benzylbenzoate@CC3-a	C_1	-20.02	6.66	-25.82	-24.58	-18.97	-13.35	-7.73	-2.11
Benzylbenzoate@CC3-b	C_1	-20.69	6.68	-24.65	-23.30	-17.69	-12.07	-6.46	-0.84
Tetrachloroethene@CC3	C_1	-10.19	2.82	-13.83	-12.74	-9.07	-5.41	-1.74	1.92
15-Crown-5@CC3	C_1	2.84	7.88	2.29	4.08	9.93	15.78	21.63	27.49
Mesitylene@CC3	C_3	-16.79	4.55	-23.29	-23.27	-18.55	-13.83	-9.11	-4.40
Mesitylene@CC3	C_1	-17.44	4.59	-22.99	-21.87	-17.54	-13.22	-8.89	-4.57
Mesitylene@CC3-TS	C_1	5.12	4.48	2.51	3.47	8.92	14.37	19.82	25.27
5- ^t Bu- <i>m</i> -xylene@CC3	C_1	-17.24	5.81	-20.82	-19.36	-13.56	-7.76	-1.95	3.85
$CC3-R-a(+)^j$	D_2	184.68	0.00	164.42	158.84	157.99	157.13	156.27	155.41

CC3- <i>R</i> -b(+) ^j	C ₂	183.98	0.00	165.70	162.73	162.38	162.02	161.66	161.30
3I@CC3-a	C_2	-2.62	1.30	-6.12	-5.77	-4.26	-2.75	-1.23	0.28
3I@CC3-b	C_1	-3.50	1.31	-7.47	-6.95	-5.52	-4.09	-2.66	-1.23
5I@CC3	C_2	-4.74	1.14	-8.92	-8.47	-6.93	-5.39	-3.85	-2.32
7I@CC3	C_1	-5.32	1.02	-9.04	-8.60	-7.05	-5.49	-3.94	-2.38
9I@CC3	C_2	-5.49	0.93	-8.88	-8.45	-6.88	-5.32	-3.75	-2.18
I ₂	D_{ih}	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
I ₃	D_{ih}	5.43	0.00	2.13	2.39	2.97	3.55	4.13	4.71
I ₃ (-)	D_{ih}	-32.85	0.00	-33.88	-33.73	-32.28	-32.83	-32.37	-31.92
I ₅	C_1	1.16	0.00	-0.28	-0.08	0.45	0.99	1.52	2.05
I ₅ (-)	C_{2v}	-24.53	0.00	-24.29	-24.28	-24.11	-23.95	-23.78	-23.61
I ₇	C_1	-0.08	0.00	-1.33	-1.05	-0.28	0.50	1.28	2.06
I ₇ (-)	C_{3v}	-18.47	0.00	-19.63	-19.36	-18.52	-17.68	-16.84	-16.00
I9	C_2	-0.80	0.00	-1.96	-1.64	-0.73	0.19	1.11	2.03
I ₉ (-)	T _d	-15.43	0.00	-16.51	-16.20	-15.31	-14.43	-13.54	-12.66

a) All species are optimized at the M06-2X/6-31G(d) level. Values are on a per enclosed atom or per enclosed molecule basis. For iodine-containing species, the values are per iodine atom but the reference is relative to the number of I₂ units (i.e. 1/9 of the reactions $4.5I_2 + CC3 \rightarrow 9I@CC3$ and $4.5I_2 \rightarrow I_9(-)$). The Kr/Xe/I atoms were described with the small-core Stuttgart pseudopotential (SDD(Kr/Xe/I)) at the M06-2X/6-31G(d) and B3LYP-D3BJ/6-31G(d,p) levels.

- b) Thermodynamic values for the dimerization of two units of **CC3**.
- c) Xe is in the intrinsic cavity (side cavity).
- d) Xe is in the extrinsic cavity (middle cavity).
- e) Binding of cluster on a per CO_2 molecule basis.
- f) Binding of cluster on a per C_2H_2 molecule basis
- g) Binding of cluster on a per H_2O molecule basis.
- h) Binding of cluster on a per SF_6 molecule basis
- i) Thermodynamic values for D_5 -symmetry structure of 15-crown-5 relative to the C_1 -symmetry structure.
- j) Thermodynamic values for CC3-R(+) radical cation are relative to neutral CC3-R. The D₂-symmetry species had one imaginary frequency which lead to a C₂-symmetry species 0.7 kcal/mol lower in energy at the M06-2X/6-31G(d) level. However, the D₂-symmetry species was 3.9 kcal/mol more stable in enthalpy (298K) at the standard level of theory.

	DC	labal		M06 2V/6 2	B3LYP/6-31G(d,p)-D3BJ		
	10	label	M00-2X/0-510(u)			//M06-2X/6-31G(d)	
			E	ZPE(NIF)	Cp(298K)	S	E
CH ₄	T _d	cc3-ch4	-40.482038	28.65(0)	2.39	44.46	-40.525925
HCCl ₃	C _{3v}	cc3-hccl3	-1419.164297	12.84(0)	3.35	70.38	-1419.290168
Xe	K	cc3-xe	-15.478947	0.00(0)	1.48	40.54	-15.539459
Kr	K	cc3-kr	-18.335064	0.00(0)	1.48	39.20	-18.393871
CO ₂	D _{ih}	cc3-co2	-188.509012	7.47(0)	2.24	51.08	-188.582410
C_2H_2	D_{ih}	cc3-rcc	-77.287780	17.18(0)	2.35	47.79	-77.331811
H ₂ O	C_{2v}	cc3-h2o	-76.373394	13.52(0)	2.37	45.11	-76.420301
SF ₆	O_h	cc3-sf6	-996.886328	13.73(0)	4.05	69.82	-997.113170
15-Crown-5	D_5	crown4	-768.797011	197.23(4)	8.15	101.44	-769.209431
15-Crown-5	C ₁	crown22	-768.814389	197.32(0)	10.18	123.87	-769.222922
Mesitylene	C_{3v}	cc3-mes2	-350.026733	116.22(0)	6.74	96.09	-350.254567
5- ^t Bu- <i>m</i> -xylene	Cs	cc3-dpe10	-467.907245	170.35(0)	9.01	114.94	-468.219820
CC3-R	Т	cc3-r	-3449.811797	920.39(0)	45.99	378.78	-3451.781546
Xe@CC3	Т	cc3-xex	-3465.303060	920.51(0)	47.68	401.59	-3467.341808
3Xe@CC3	C ₃	cc3-rcj	-3496.279406	920.86(0)	50.76	435.50	-3498.446400
4Xe@CC3	Т	cc3-rc	-3511.769899	920.53(3)	50.80	455.08ª	-3514.001263
4Xe@CC3	C ₁	cc3-rcx	-3511.770034	921.20(0)	52.30	452.50	-3514.001264
5Xe@CC3	Т	cc3-xexx	-3527.253181	921.51(3)	52.11	462.54ª	-3529.551781
5Xe@CC3	C ₁	cc3-xexxqq	-3527.253376	921.92(0)	53.73	470.72	-3529.551652
Kr@CC3	Т	cc3-krx	-3468.153873	920.61(0)	47.58	395.27	-3470.188150
4Kr@CC3	Т	cc3-re	-3523.180444	920.74(0)	52.49	447.99	-3525.401513
5Kr@CC3	Т	cc3-krxx	-3541.517783	921.25(0)	54.07	469.43	-3543.802298
SF ₆ @CC3-TS	C ₃	cc3-rsf6ts	-4446.704542	934.20(3)	49.32	421.07 ^b	-4448.908850
SF ₆ @CC3-TS	C ₁	cc3-rsf6ty	-4446.707802	934.70(1)	50.29	419.36	-4448.912943
SF ₆ @CC3	Т	cc3-rsf6c	-4446.713646	934.24(0)	50.99	425.13	-4448.926350
4SF ₆ @CC3	Т	cc3-rsf6by	-7437.416486	978.51(0)	64.34	512.21	-7440.334772
5SF ₆ @CC3	Т	cc3-rsf6bx	-8434.323681	992.27(3)	67.62	570.11ª	-8437.490427
5SF ₆ @CC3	C ₃	cc3-rsf6bxx	-8434.325076	992.95(0)	69.09	558.01	-8437.487444
$(SF_6)_4$	T	cc3-sf6bby	-3987.551264	55.27(0)	19.29	237.77	-3988.463895
$(SF_6)_5$	D_2	cc3-sf6bb	-4984.447231	69.70(1)	23.22	267.16 ^a	-4985.587925
$(SF_6)_5$	C ₂	cc3-sf6bbx	-4984.447462	69.94(0)	23.61	257.46	-4985.587925
CH ₄ @CC3	Т	cc3-raa	-3490.298654	949.70(3)	47.17	408.59ª	-3492.316986
CH ₄ @CC3	C ₃	cc3-raax	-3490.300842	949.91(0)	48.80	406.60	-3492.317898
3CH ₄ @CC3	C ₃	cc3-rbb	-3571.280207	1008.90(0)	54.01	445.65	-3573.392710
4CH ₄ @ CC3 -a	T	cc3-ra	-3611.769049	1037.98(6)	53.68	471.76 ^a	-3613.930046
4CH ₄ @ CC3 -b	Т	cc3-rb	-3611.769721	1038.79(0)	56.46	461.18	-3613.929442
5CH ₄ @CC3	Т	cc3-raaq	-3652.262628	1069.08(3)	56.57	469.44ª	-3654.465330
5CH ₄ @CC3	C_1	cc3-raarr	-3652.262705	1069.18(0)	58.48	480.64	-3654.465212
6CH ₄ @ CC3	Ť	cc3-roo	-3692.722974	1099.87(6)	56.40	464.24ª	-3694.958912
6CH ₄ @ CC3	C ₁	cc3-rooxx	-3692.723177	1101.24(0)	59.29	473.11	-3694.958966
	1		,	(-)	-		
CO ₂ @ CC3- a	C ₃	cc3-rco2	-3638.330464	928.04(2)	47.75	411.06ª	-3640.380371
CO ₂ @CC3-b	C ₂	cc3-rj0	-3638.332003	928.56(0)	48.54	406.08	-3640.377217

Table S2.Point Groups, Absolute Energies (Hartrees) , Zero-Point Energies (kcal/mol), Number of
Imaginary Frequencies, Capacity Corrections (kcal/mol) , and Entropies (cal/mol-K) for Various
Species

4CO ₂ @CC3-a	C_2	cc3-rjj	-4203.896077	952.80(1)	55.53	467.48 ^a	-4206.175999
4CO ₂ @CC3-b	C_1	cc3-rj	-4203.902830	953.08(0)	55.82	461.01	-4206.175562
6CO ₂ @CC 3 -a	Т	cc3-rjjj	-4580.929456	969.16(6)	56.88	477.92ª	-4583.347875
6CO ₂ @ CC3- b	C_3	cc3-rtt	-4580.945124	969.72(2)	59.17	487.96ª	-4583.367497
6CO ₂ @ CC3- с	C_1	cc3-rt	-4580.951602	969.79(0)	60.35	491.29	-4583.374558
(CO ₂) ₄	S_4	cc3-rjjx	-754.054402	31.43(0)	9.85	133.80	-754.346893
(CO ₂) ₆ -a	T_{h}	cc3-rjjjx	-1131.083530	47.36(0)	15.07	171.85	-1131.526607
(CO ₂) ₆ -b	C_1	cc3-rtx	-1131.087289	47.76(0)	14.82	174.10	-1131.526174
(CO ₂) ₆ -c	S_6	cc3-rtxx	-1131.090894	47.85(0)	14.72	168.55	-1131.529972
$(C_2H_2)@CC3$	C_3	rco2cc	-3527.108606	937.99(0)	48.87	407.84	-3529.127246
$(C_2H_2)_4$ (<i>a</i>) CC3	C ₂	rjjee	-3759.012780	993.20(0)	55.60	454.46	-3761.180088
$(C_2H_2)_6@CC3$	$\overline{C_3}$	rjjjee	-3913.569792	1028.70(0)	59.87	482.32	-3915.824648
$(C_2H_2)_4$	S_4	rjjecx	-309.166079	70.31(2)	9.17	120.85	-309.345810
$(C_2H_2)_4$	C_1	rjjecy	-309.166371	70.68(0)	10.07	128.38	-309.346166
$(C_2H_2)_6$	C ₃	rjjjeex	-463.754526	106.25(0)	15.41	173.24	-464.026688
	5						
H ₂ O@CC3	C_1	cc3-ww00	-3526.205816	936.54(0)	47.81	397.07	-3528.225206
6H ₂ O@CC3	C_1	cc3-www	-3908.213104	1018.17(0)	54.91	442.16	-3910.478440
8H ₂ O@CC3	C ₁	cc3-wwb	-4061.017381	1051.69(0)	56.57	447.89	-4063.379253
12H ₂ O@CC3	C ₂	cc3-wwc	-4366.646886	1118.94(0)	61.63	472.42	-4369.204766
$(H_2O)_{\epsilon}$	C_1	cc3-www1	-458.358758	96.69(0)	8.91	108.83	-458.647013
$(H_2O)_{0}$	Dal	cc3-wwb1	-611 169245	129 76(0)	11.32	123.60	-611 558716
$(H_2O)_{12}$	$\frac{D_{2a}}{D_2}$	cc3-wwc1	-916 759862	194 39(0)	17.38	169 53	-917 344922
	23		910.759002	19 1139(0)	17.50	109.00	511.511522
$(\mathbf{CC3-R})_2$ w-to-w	D_2	cc3-rdim	-6899.663698	1842.48(0)	91.95	698.66	-6903.629369
$(\mathbf{CC3-R})_2$ w to w	$\frac{D}{C_2}$	cc3-rdim6	-6899 656664	1841 18(0)	92.65	718 58	-6903 619398
$(\mathbf{CC3} \cdot \mathbf{R})_2 \approx t_0 \cdot \mathbf{a}$	$\frac{O_3}{D_2}$	cc3-rdim9	-6899 646206	1840 25(2)	91.57	719 31ª	-6903 608255
CC3-R/S w-to-w	<u> </u>	cc3-rdim4	-6899 670462	184222(0)	92.27	708 47	-6903 638014
Xe@w-to-w-a	$\frac{D_6}{C_2}$	cc3-rdim33	-	1842.76(0)	93.65	721.67	-6919 190198
Xe@w-to-w TS	$\frac{C_3}{C_2}$	cc3-rdim10	-6915 152814	1842.70(0)	93.07	713.68	-6919 186775
Xe@w-to-w-b	$\frac{C_3}{D_2}$	cc3-rdim2	-6915 154499	1842 59(0)	93.64	718.00	-6919 189116
3Xe@w-to-w	$\frac{D_3}{D_2}$	cc3-rdim3	-6946 139084	1842.85(0)	96.91	758 29	-6950 308158
$\mathbf{X}_{\mathbf{A}}(\mathbf{W}, \mathbf{t}_{\mathbf{A}}, \mathbf{W})$	<u>D</u> ₃ S.	cc3-rdim5	-6015 162510	1842.03(0)	03.03	720.02	-6919 199030
$(\mathbf{CC3}-\mathbf{R})$, w-to-w	\overline{D}_{6}	cc3-rdim	-6899 663698	1842.21(0) 1842.48(0)	91.95	698.66	-6903 629369
(CCJ-R) ₂ w-to-w	D ₃		-0077.005078	1042.40(0))1.)5	070.00	-0905.029509
Dinhenlyether	C	cc3-dpe	-538 281307	117 77)(0)	6 79	99.51	-538 574393
Dimesitylether	$\frac{C_2}{C_1}$	cc3-dpe2	-774.064104	223 32(0)	13.14	1/5 01	-774 531358
Octachloropropape	$\frac{c_2}{C_1}$	cc3-dpe4	-3705 527670	17.40(0)	8.40	112.01	-3795 846681
Hexachloropropene	$\frac{C_{2v}}{C}$	cc3-dpe6	-2875 200045	17.40(0) 15.53(0)	6.83	102.01	-2875 454120
Benzulbenzoate	$\frac{C_s}{C}$	cc3-dpe8	600 887714	13.33(0) 143.00(0)	8.80	102.47	601 253800
Tatrachlaracthana	$\frac{c_1}{D}$	cc3-dpe12	-090.887714	143.00(0)	4.62	91 12 91 12	1016 066755
Magitulana	$\frac{D_{2h}}{C}$	cc3-mes?	250 026722	9.99(0)	6.74	06.00	-1910.900755
	$\frac{C_{3v}}{C}$	002 rool22	-350.020733	110.22(0)	40.06	90.09 410.84	4971 101059
$\frac{\Pi(C)_{3}(WCCS)}{\Pi(C)_{3}(WCCS)}$	$\frac{C_1}{C}$	cc3-dpe1	-4606.994160	955.97(0)	49.90	419.64	-48/1.101938
Dipneniyether@CC3	$\frac{C_2}{C}$	cc3-dpe3	-3988.113402	1039.38(0)	52.49	422.22	-3990.387932
Dimesityletner@CC3	$\frac{C_2}{C}$	cc3 dpe5	-4223.844032	1147.44(0)	57.48	448.04	-4226.302068
Uctacnioropropane@CC3	$\frac{c_1}{c}$	co3 dpo77	-/245.331934	958.08(0)	52.07	438.23	-/24/.034032
Hexchloropropene@CC3	$\frac{c_1}{c}$	cc3 dra0	-0325.028477	936.66(0)	52.97	431.85	-0327.200234
DenzyIdenzoate@CC3-a	$\frac{C_1}{C}$	cc3 dec000	-4140.731410	1064.83(0)	54.59	441.92	-4143.08/122
Benzylbenzoate@CC3-b	$\frac{c_1}{c}$	002 dmo122	-4140./32484	1064.98(0)	54.55	441.95	-4143.085287
1 etrachioroethene@CC3	C_1		-5366.624901	931.06(0)	51.03	423.24	-5368.774839
15-Crown-5@CC3	C_1	cco-crown	-4218.621655	1120.14(0)	55.53	444.13	-4221.013366

Mesitylene@CC3	C ₃	cc3-mes3	-3799.865290	1038.01(2)	51.36	427.70 ^a	-3802.080482
Mesitylene@CC3	C1	cc3-mes4	-3799.866330	1038.45(0)	51.85	420.35	-3802.039252
Mesitylene@CC3-TS	C1	cc3-mes3tu	-3799.830374	1037.87(1)	52.60	431.62	-3802.080071
5- ^t Bu- <i>m</i> -xylene@CC3	C1	cc3-dpe11	-3917.746511	1092.73(0)	54.47	435.68	-3920.043811
CC3- <i>R</i> -a(+)	D ₂	cc3-rrad	-3449.517481	914.35(1)	46.46	387.36	-3451.519526
CC3- <i>R</i> -b(+)	C ₂	cc3-raddx	-3449.518599	917.49(1)	45.93	382.35	-3451.517485
3I@CC3-a	C ₂	cc3-i3a	-3483.919368	921.77(1)	49.78	427.30 ^a	-3486.074115
3I@ CC3- b	C ₁	cc3-i3	-3483.923558	921.52(0)	50.49	429.78	-3486.080652
5I@CC3	C ₂	cc3-i5	-3506.674608	921.94(0)	53.46	458.41	-3508.956855
7I@CC3	C ₁	cc3-i7	-3529.426210	922.52(0)	56.42	489.04	-3531.826996
9I@CC3	C ₂	cc3-i9a	-3552.175669	923.04(0)	59.43	519.48	-3554.693533
I ₂	D _{ih}	cc3-i5c	-22.730028	0.28(0)	2.43	62.61	-22.838062
I ₃	D _{ih}	cc3-i3c	-34.069074	1.34(0)	3.51	76.53	-34.246902
I ₃ (-)	D _{ih}	cc3-i3b	-34.252091	0.51(0)	3.98	80.29	-34.419048
I ₅	C ₁	cc3-i5aa	-56.815849	0.85(0)	6.43	129.82	-57.097419
I ₅ (-)	C _{2v}	cc3-i5b	-57.011325	1.01(0)	6.78	121.33	-57.290934
I ₇	C ₁	cc3-i7c	-79.555973	1.39(0)	10.00	164.72	-79.948025
I ₇ (-)	C _{3v}	cc3-i7b	-79.761107	1.48(0)	9.91	160.42	-80.152226
I ₉	Cs	cc3-i9c	-102.296586	1.91(0)	13.08	199.14	-102.799332
I ₉ (-)	T _d	cc3-i9b	-102.506448	1.91(0)	13.08	202.08	-103.008068

a) The structure had one or more imaginary frequencies which were not included for the calculation of zero-point energy, heat capacity correction or entropy. The entropy value in this table was increased by an amount equal to the contribution the imaginary frequencies would make if they were real.

b) The transition state is expected to have one imaginary frequency. The entropy value for this structure was increased by an amount equal to the contribution of two imaginary frequencies would make if they were real.