Supplementary Materials for

Catalytic sulfate formation mechanism influenced by important

constituents of cloud water via the reaction of SO₂ oxidized by

hypobromic acid in marine areas

Jiarong Liu $^{\rm a},$ Danli Liang $^{\rm a},$ Ling Liu $^{\rm a},$ An Ning $^{\rm a},$ and Xiuhui Zhang $^{\rm a*}$

^a Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical

Engineering, Beijing Institute of Technology, Beijing 100081, China.

* Corresponding author, E-mail address: <u>zhangxiuhui@bit.edu.cn.</u>

Contents

Section 1. Theoretical method
1.1 Aqueous concentration of S(IV)
1.2 Aqueous concentration of hypobromic acid
Section 2. Figures
Section 3. Results
3.1 The reaction rates between HOBr and $HOSO_2^-$ leading to sulfate formation.13
3.1.1 The reaction rate via Pathway 1(HOBr + HOSO ₂ ⁻)
3.1.2 The reaction rate via Pathway 2(HOBr + HOSO ₂ ⁻)15
3.1.3 S(IV) oxidation rates, related reaction rate constants and S(IV) lifetimes
through Pathway $1(HOBr + HOSO_2^{-})$ and Pathway $2(HOBr + HOSO_2^{-}) \dots 17$
3.2 The reaction rates between HOBr and SO_3^{2-} leading to sulfate formation 19
3.2.1 The reaction rate via Pathway $1(HOBr + SO_3^{2-})$
3.2.2 The reaction rate via Pathway $2(HOBr + SO_3^{2-})$
3.2.3 S(IV) oxidation rates, related reaction rate constants and S(IV) lifetimes
through Pathway 1(HOBr + SO_3^{2-}) and Pathway 2(HOBr + SO_3^{2-})24
3.3 The reaction rates between OBr^{-} and SO_3^{2-} leading to sulfate formation27

3.3.1 The reaction rate via Pathway $1(OBr^{-} \text{ and } SO_3^{2-})$
3.3.2 The reaction rate via Pathway 2(OBr ⁻ and SO_3^{2-})
3.3.3 S(IV) oxidation rates, related reaction rate constants and S(IV) lifetimes
through Pathway $1(OBr^{-} + SO_3^{2-})$ and Pathway $2(OBr^{-} + SO_3^{2-})$
Section 4. Cartesian coordinates of the structures
4.1 Cartesian coordinates of the structures involving in the reaction of HOBr with
HOSO ₂ ⁻
4.2 Cartesian coordinates of the structures involving in the reaction of HOBr with
SO ₃ ²⁻
4.3 Cartesian coordinates of the structures involving in the reaction of OBr ⁻ with
SO ₃ ²⁻ 46

Section 1. Theoretical method

1.1 Aqueous concentration of S(IV)

For reactant S(IV), the ratio of the distribution of different forms (HOSO₂⁻, SO₃²⁻) is important for identifying the possible oxidation reaction, and thus should be calculated. The corresponding computational methods about the ratio of the distribution of different forms (HOSO₂⁻, SO₃²⁻) has been discussed in our previous work.¹

1.2 Aqueous concentration of hypobromic acid

For the reactant HOBr, the aqueous [HOBr] can also estimate based on the gasphase mixing ratio using Henry's law

$[HOBr] = p(HOBr) \times H(HOBr) (1)$

where p(HOBr) is the partial pressure of HOBr in the gas phase and H(HOBr) is the Henry's constant which has been measured from laboratory experiment and reported to be about 1900 M¹atm⁻¹.²

Moreover, according to measurement results, the gas phase ground-level mixing ratio HOBr varies between about 0.01 ppbv and 0.310 ppbv. The corresponding partial pressures p(HOBr) are 1.00×10^{-11} atm- 3.10×10^{-10} atm

$$[HOBr]=1.00\times10^{-11} \text{ atm}\times1900 \text{ M}^{1} \text{ atm}^{-1}=1.90\times10^{-8} \text{ M} (2)$$
$$[HOBr]=3.10\times10^{-10} \text{ atm}\times1900 \text{ M}^{1} \text{ atm}^{-1}=5.89\times10^{-7} \text{ M} (3)$$

we thus obtain a range of 1.90×10^{-8} - 5.89×10^{-7} M for [HOBr]. The concentration of OBr⁻ anion can be obtained from the equilibrium expression:

HOBr+H₂O
$$\leftrightarrow$$
OBr+H₃O⁺ (4)

$$\frac{[\text{HOBr}]}{[\text{OBr}]} = \frac{[\text{H}_3\text{O}]}{K_{a3}} \quad (5)$$

$$[OBr^{-}] = K_{a3} \times [HOBr] / [H_3 0^{+}] (6)$$

where K_{a3} (10^{-8.9}) is the acidity constant for HOBr. Concentrations of OBr⁻ corresponding to the [HOBr] range given above at different pH are shown in Table S2.

The distributions fraction of the two anions can be computed as:

$$\delta_{\text{HOBr}} = [\text{HOBr}] / ([\text{HOBr}] + [\text{OBr}]) (7)$$

$$= [HOBr]/([HOBr]+K_{a3}\times[HOBr]/[H_{3}O^{+}]) (8)$$

= 1/(1+K_{a3}/[H_{3}O^{+}])=[H_{3}O^{+}]/([H_{3}O^{+}]+K_{a3}) (9)
$$\delta_{OBr^{-}} = [OBr^{-}]/([HOBr]+[OBr^{-}]) (10)$$

= [OBr^{-}]/([OBr^{-}]+[H_{3}O^{+}]\times[OBr^{-}]/K_{a3}) (11)
= 1/(1+[H_{3}O^{+}]/K_{a3})=K_{a3}/([H_{3}O^{+}]+K_{a3}) (12)

Table S1. Calculated aqueous $[OBr^-]$ under the different aqueous [HOBr] ($[HOBr]= 1.90 \times 10^{-8}$ M and $[HOBr]= 5.89 \times 10^{-7}$ M) and pH.

pН	[OBr ⁻]	[OBr ⁻]
3	2.39×10 ⁻¹⁴	7.42×10 ⁻¹³
4	2.39×10 ⁻¹³	7.42×10 ⁻¹²
5	2.39×10 ⁻¹²	7.42×10 ⁻¹¹
6	2.39×10 ⁻¹¹	7.42×10 ⁻¹⁰
6.97	2.23×10 ⁻¹⁰	6.92×10 ⁻⁹
7	2.39×10 ⁻¹⁰	7.42×10 ⁻⁹
7.5	2.39×10 ⁻⁹	7.42×10 ⁻⁸
8	1.90×10 ⁻⁸	5.89×10 ⁻⁷
9	2.39×10 ⁻⁸	7.42×10 ⁻⁷

Section 2. Figures

Fig. S1 The Gibbs free energy profile (kcal/mol, at 298.15 K and a reference concentration of 1 mol/L) for the reaction of HOBr with SO_3^{2-} through Pathway 2(HOBr + SO_3^{2-}) at the DLPNO-CCSD(T)/aug-cc-pVTZ//M06-2X/6-311++G (3df, 3pd) level of theory with or without pseudopotential. Solvent corrections are included in the M06-2X calculations using the SMD model. The white, pink, red, and yellow spheres represent H, Br, O, and S atoms, respectively.

In order to investigate the effect of pseudopotential on the reactions studied in the present work, we calculated the energy barrier of Pathway 2 between HOBr and $SO_3^{2^-}$, the most competitive mechanism in the studied system, with and without pseudopotential. As shown in Fig. S1, the reaction energy barrier with pseudopotential at the M06-2X/6-311++G(3df,3pd)//DLPNO-CCSD(T)/aug-cc-pVTZ (aug-cc-pVTZ-PP for the optimization of Br) level of theory is 10.4 kcal/mol, and that without pseudopotential at the M06-2X/6-311++G(3df,3pd)//DLPNO-CCSD(T)/aug-cc-pVTZ level of theory is 10.0 kcal/mol, with a low deviation of 0.4 kcal/mol. It is suggested that the effect of ignoring pseudopotential on the reaction energy barrier is very unobvious.

Fig. S2 The Gibbs free energy profile (kcal/mol, at 298.15 K and a reference concentration of 1 mol/L) for the reaction of HOBr with $HOSO_2^-$ through (a) Pathway 1(HOBr + $HOSO_2^-$) and (b) Pathway 2(HOBr + $HOSO_2^-$) at the DLPNO-CCSD(T)/aug-cc-pVTZ//M06-2X/6-311++G (3df, 3pd) level of theory. Solvent corrections are included in the M06-2X calculations using the SMD model. The white, pink, red, and yellow spheres represent H, Br, O, and S atoms, respectively.

Fig. S3 The Gibbs free energy profile (kcal/mol, at 298.15 K and a reference concentration of 1 mol/L) for the reaction of HOBr with SO_3^{2-} through (a) Pathway 1(HOBr + SO_3^{2-}) and (b) Pathway 2(HOBr + SO_3^{2-}) at the DLPNO-CCSD(T)/aug-cc-pVTZ//M06-2X/6-311++G (3df, 3pd) level of theory. Solvent corrections are included in the M06-2X calculations using the SMD model. The white, pink, red, and yellow spheres represent H, Br, O, and S atoms, respectively.

Fig. S4 The Gibbs free energy profile (kcal/mol, at 298.15 K and a reference concentration of 1 mol/L) for the reaction of OBr⁻ with SO_3^{2-} through (a) Pathway 1(OBr⁻ + SO_3^{2-}) and (b) Pathway 2(OBr⁻ + SO_3^{2-}) at the DLPNO-CCSD(T)/aug-cc-pVTZ//M06-2X/6-311++G (3df, 3pd) level of theory. Solvent corrections are included in the M06-2X calculations using the SMD model. The white, pink, red, and yellow spheres represent H, Br, O, and S atoms, respectively.

6.60

3.30

0.00

0.00

4.71

Length unit: Bohr

Fig. S5. Contour maps of the electron density differences between (a) R_{c3} and TS_3 , (b) R_{c4} and TS_4 , (c) R_{c5} and TS_5 (d) R_{c6} and TS_6 , (e) R_{c8} and TS_8 , (f) R_{c9} and TS_9 , (g) R_{c10} and TS_{10} , (h) R_{c11} and TS_{11} , (i) R_{c12} and TS_{12} , (j) R_{c13} and TS_{13} , (k) R_{c14} and TS_{14} , (l) R_{c15} and TS_{15} . Solid and dashed lines represent areas where electron density increases and decreases, respectively.

6.23

3.11

0.00

0.00

5.16

Length unit: Bohr

R_{e15}

14.12

9.41

T\$₁₅

15.49

10.33

Section 3. Results

3.1 The reaction rates between HOBr and HOSO₂- leading to sulfate formation

3.1.1 The reaction rate via Pathway 1(HOBr + HOSO₂-)

The detailed formation process of sulfate from HOBr and $HOSO_2^-$ through Pathway 1(HOBr + $HOSO_2^-$) is described by the following reaction equations:

HOBr+HOSO₂⁻ ↔ [HOBr-HOSO₂⁻] (1)
[HOBr-HOSO₂⁻] + M → [BrSO₃H-H₂O-M⁻] (2)
[BrSO₃H-OH⁻-M⁻]→BrSO₃⁻+H₂O+M (3)
BrSO₃⁻+H₂O ↔ [BrSO₃⁻-H₂O] (4)
[BrSO₃⁻-H₂O]
$$\xrightarrow{\text{TS}}$$
 [H₂SO₄-Br⁻] (5)
[H₂SO₄-Br⁻]→H₂SO₄+Br⁻ (6)

Applying the steady-state approximation to the pre-reactive complex, and assuming that the complex is in equilibrium with the reactant, we obtain the following expressions for the uncatalyzed formation reaction rate ($v_{1HOBr+HOSO2}$, un) of sulfate (where k_n is the rate constant for reaction n in the scheme given above):

$$v_{1\text{HOBr}+\text{HOSO}_{2},\text{un}} = \frac{d[\text{SO}_{4}^{2^{-}}]}{dt} = k_{5}[\text{BrSO}_{3}^{-}\text{H}_{2}\text{O}] \quad (7)$$

$$k_{4}[\text{BrSO}_{3}][\text{H}_{2}\text{O}] - k_{.4}[\text{BrSO}_{3}^{-}\text{H}_{2}\text{O}] - k_{5}[\text{BrSO}_{3}^{-}\text{H}_{2}\text{O}] = 0$$

$$[\text{BrSO}_{3}^{-}\text{H}_{2}\text{O}] = \frac{k_{4}[\text{BrSO}_{3}][\text{H}_{2}\text{O}]}{k_{.4} + k_{5}} \quad (7\text{-}1)$$

$$k_{3}[\text{BrSO}_{3}\text{H}\text{-}\text{OH}^{-}\text{-}\text{M}^{-}] - k_{4}[\text{BrSO}_{3}][\text{H}_{2}\text{O}] = 0$$

$$[\text{BrSO}_{3}^{-}] = \frac{k_{3}[\text{BrSO}_{3}\text{H}\text{-}\text{OH}^{-}\text{-}\text{M}^{-}]}{k_{4}[\text{H}_{2}\text{O}]} \quad (7\text{-}2)$$

$$k_{2}[\text{HOBr}\text{-}\text{HOSO}_{2}][\text{M}] - k_{3}[\text{BrSO}_{3}\text{H}\text{-}\text{OH}^{-}\text{-}\text{M}^{-}] = 0$$

$$[\text{BrSO}_{3}\text{H}\text{-}\text{OH}^{-}\text{-}\text{M}^{-}] = \frac{k_{2}[\text{HOBr}\text{-}\text{HOSO}_{2}][\text{M}]}{k_{3}} \quad (7\text{-}3)$$

$$k_{1}[\text{HOBr}][\text{HOSO}_{2}^{-}] - k_{.1}[\text{HOBr}\text{-}\text{HOSO}_{2}^{-}] - k_{.2}[\text{HOBr}\text{-}\text{HOSO}_{2}][\text{M}] = 0$$

$$[\text{HOBr}\text{-}\text{HOSO}_{2}^{-}] = \frac{k_{1}[\text{HOBr}][\text{HOSO}_{2}^{-}]}{k_{.1} + k_{2}[\text{M}]} \quad (7\text{-}4)$$

$$v_{1\text{HOBr}+\text{HOSO}_{2},\text{un} = \frac{d[\text{SO}_{4}^{2^{-}}]}{dt} = \frac{k_{5}}{k_{.4} + k_{5}} \times \frac{k_{1} \times k_{2}}{k_{.1} + k_{2}[\text{M}]} \times [\text{HOBr}][\text{HOSO}_{2}][\text{M}] \quad (7\text{-}5)$$

The pseudo-unimolecular uncatalyzed S(IV) oxidation rates through Pathway 1(HOBr + HOSO₂⁻) can then be written as

$$v_{1\text{HOBr}+\text{HOSO}_{2},\text{un-S(IV)}} = \frac{k_{5}}{k_{.4} + k_{5}} \times \frac{k_{1} \times k_{2}}{k_{.1} + k_{2}[M]} \times [\text{HOBr}][M]$$
(7-6)

where k_1/k_{-1} are the forward/reverse rate coefficients for the reaction 1, k_{-4} is the reverse rate coefficient for the reaction 4, k_2 is the diffusion rate constant for the reaction 2, and k_5 is the unimolecular rate constants for the uncatalyzed reaction 5. [M] is the concentration of catalyst M.

The catalyzed formation process of sulfate from HOBr and $HOSO_2^-$ through Pathway 1(HOBr + $HOSO_2^-$) is similarly described by the following reaction equations:

HOBr+HOSO₂⁻ ↔ [HOBr-HOSO₂⁻] (1)
[HOBr-HOSO₂⁻] +M → [BrSO₃H-H₂O-M⁻] (2)
[BrSO₃H-OH⁻-M⁻]→BrSO₃⁻+H₂O+M (3)
BrSO₃⁻+H₂O ↔ [BrSO₃⁻-H₂O] (4)
[BrSO₃⁻-H₂O]+M↔[BrSO₃⁻-H₂O-M] (8)
[BrSO₃⁻-H₂O-M]
$$\xrightarrow{\text{TS}}$$
 [H₂SO₄-Br⁻-M] (9)
[H₂SO₄-Br⁻-M]→H₂SO₄ + Br⁻ + M (10)

Applying the steady-state approximation to the pre-reactive complex and assuming that the complex is in equilibrium with the reactant, we obtain the following expressions for the catalyzed formation reaction rate ($v_{1HOBr + HOSO2}$, cat) of sulfate (where k_n is the rate constant for reaction n in the scheme given above):

$$v_{1\text{HOBr}+\text{HOSO}_{2},\text{cat}} = \frac{d[\text{SO}_{4}^{2^{-}}]}{dt} = k_9[\text{BrSO}_{3}^{-}\text{H}_2\text{O}-\text{M}] (10)$$

$$k_8[\text{BrSO}_{3}^{-}\text{H}_2\text{O}][\text{M}] - k_{-8}[\text{BrSO}_{3}^{-}\text{H}_2\text{O}-\text{M}] - k_9[\text{BrSO}_{3}^{-}\text{H}_2\text{O}-\text{M}] = 0$$

$$[\text{BrSO}_{3}^{-}\text{H}_2\text{O}-\text{M}] = \frac{k_8[\text{BrSO}_{3}^{-}\text{H}_2\text{O}][\text{M}]}{k_{-8} + k_9} (11-1)$$

$$k_4[\text{BrSO}_{3}^{-}][\text{H}_2\text{O}] - k_{-4}[\text{BrSO}_{3}^{-}\text{H}_2\text{O}] - k_8[\text{BrSO}_{3}^{-}\text{H}_2\text{O}][\text{M}] = 0$$

$$[\text{BrSO}_{3}^{-}\text{H}_2\text{O}] = \frac{k_4[\text{BrSO}_{3}^{-}][\text{H}_2\text{O}]}{k_{-4} + k_8[\text{M}]} (11-2)$$

$$k_3[\text{BrSO}_{3}\text{H} - \text{OH}^{-}\text{M}^{-}] - k_4[\text{BrSO}_{3}^{-}][\text{H}_2\text{O}] = 0$$

$$[\text{BrSO}_{3}^{-}] = \frac{k_3[\text{BrSO}_{3}\text{H} - \text{OH}^{-}\text{-M}^{-}]}{k_4[\text{H}_2\text{O}]} (11-3)$$

$$k_{2}[\text{HOBr-HOSO}_{2}^{2}][\text{M}] - k_{3}[\text{BrSO}_{3}\text{H-OH}^{-}\text{M}^{-}] = 0$$

$$[\text{BrSO}_{3}\text{H-OH}^{-}\text{M}^{-}] = \frac{k_{2}[\text{HOBr-HOSO}_{2}^{2}][\text{M}]}{k_{3}} \quad (11-4)$$

$$k_{1}[\text{HOBr}][\text{HOSO}_{2}^{2}] - k_{-1}[\text{HOBr-HOSO}_{2}^{2}] - k_{2}[\text{HOBr-HOSO}_{2}^{2}][\text{M}] = 0$$

$$[\text{HOBr-HOSO}_{2}^{-}] = \frac{k_{1}[\text{HOBr}][\text{HOSO}_{2}^{2}]}{k_{-1} + k_{2}[\text{M}]} \quad (11-5)$$

$$v_{1\text{HOBr+HOSO}_{2}^{2}, \text{cat}} = \frac{d[\text{SO}_{4}^{2^{-}}]}{dt}$$

$$= \frac{k_{9} \times k_{8}}{k_{-8} + k_{9}} \times \frac{1}{k_{-4} + k_{8}[\text{M}]} \times \frac{k_{1} \times k_{2}}{k_{-1} + k_{2}[\text{M}]} [\text{HOBr}][\text{HOSO}_{2}^{2}][\text{M}][\text{M}] \quad (11-6)$$

The pseudo-unimolecular uncatalyzed S(IV) oxidation rates through Pathway 1(HOBr + HOSO₂⁻) can then be written as

$$v_{1\text{HOBr}+\text{HOSO}_{2},\text{un-S}(\text{IV})} = \frac{k_{9} \times k_{8}}{k_{-8} + k_{9}} \times \frac{1}{k_{-4} + k_{8}[\text{M}]} \times \frac{k_{1} \times k_{2}}{k_{-1} + k_{2}[\text{M}]} [\text{HOBr}][\text{M}][\text{M}] (11-7)$$

where k_8/k_{-8} symbolize the forward/reverse rate coefficients for the reaction 8 and k_9 is the unimolecular rate constant for the catalyzed reaction 9. [M] is the concentration of catalysts M.

3.1.2 The reaction rate via Pathway 2(HOBr + HOSO₂-)

The detailed formation process of sulfate from HOBr and $HOSO_2^-$ through Pathway 2(HOBr + $HOSO_2^-$) is described by the following reaction equations:

HOBr+HOSO₂⁻↔[HOBr-HOSO₂⁻] (1')
[HOBr-HOSO₂⁻]
$$\xrightarrow{\text{TS}}$$
 [H₂SO₄-Br⁻] (2')
[H₂SO₄-Br⁻]→H₂SO₄ + Br⁻ (3')

Applying the steady-state approximation to the pre-reactive complex and assuming that the complex is in equilibrium with the reactant, we obtain the following expressions for the uncatalyzed formation reaction rate ($v_{2HOBr + HOSO2}$, un) of sulfate (where k_n is the rate constant for reaction n in the scheme given above):

$$v_{2\text{HOBr}+\text{HOSO}_{2}^{-},\text{un}} = \frac{d[\text{SO}_{4}^{2^{-}}]}{dt} = k_{2'}[\text{HOBr}-\text{HOSO}_{2}^{-}] \quad (4')$$

$$k_{1'}[\text{HOBr}][\text{HOSO}_{2}^{-}] - k_{-1'}[\text{HOBr}-\text{HOSO}_{2}^{-}] - k_{2'}[\text{HOBr}-\text{HOSO}_{2}^{-}] = 0$$

$$[\text{HOBr}-\text{HOSO}_{2}^{-}] = \frac{k_{1'}}{k_{-1'} + k_{2'}}[\text{HOBr}][\text{HOSO}_{2}^{-}] \quad (4'-1)$$

$$v_{2\text{HOBr}+\text{HOSO}_{2}^{-},\text{un}} = \frac{d[\text{SO}_{4}^{2^{-}}]}{dt} = \frac{k_{1'} \times k_{2'}}{k_{-1'} + k_{2'}}[\text{HOBr}][\text{HOSO}_{2}^{-}] \quad (4'-2)$$

The pseudo-unimolecular uncatalyzed S(IV) oxidation rate through Pathway 2(HOBr + HOSO₂⁻) can be written as

$$v_{2\text{HOBr}+\text{HOSO}_{2},\text{un-S(IV)}} = \frac{k_{1'} \times k_{2'}}{k_{-1'} + k_{2'}} [\text{HOBr}] (4'-3)$$

where k_{1}/k_{-1} , symbolize the forward/reverse rate coefficients for the reaction 1' and k_{2} , is the unimolecular rate constant for the uncatalyzed reaction 2'.

The catalyzed formation process of sulfate from HOBr and $HOSO_2^-$ through Pathway 2(HOBr + $HOSO_2^-$) is described by the following reaction equations:

HOBr+HOSO₂⁻↔[HOBr-HOSO₂⁻] (1')
[HOBr-HOSO₂⁻]+M ↔ [HOBr-HOSO₂⁻-M] (5')
[HOBr-HOSO₂⁻-M]
$$\xrightarrow{\text{TS}}$$
 [H₂SO₄-Br⁻-M] (6')
[H₂SO₄-Br⁻-M]→H₂SO₄+Br⁻+M (7')

Applying the steady-state approximation to the pre-reactive complex and assuming that the complex is in equilibrium with the reactant, we obtain the following expressions for the catalyzed formation reaction rate ($v_{2HOBr + HOSO2}$, cat) of sulfate (where k_n is the rate constant for reaction n in the scheme given above):

$$v_{2\text{HOBr}+\text{HOSO}_{2},\text{cat}} = \frac{d[\text{SO}_{4}^{2^{-}}]}{dt} = k_{6'}[\text{HOSO}_{2}^{-}\text{-HOBr}\text{-M}] \quad (8')$$

$$k_{5'}[\text{HOBr}-\text{HOSO}_{2}^{-}][\text{M}] - k_{-5'}[\text{HOSO}_{2}^{-}\text{-HOBr}\text{-M}] - k_{6'}[\text{HOSO}_{2}^{-}\text{-HOBr}\text{-M}] = 0$$

$$[\text{HOSO}_{2}^{-}\text{-HOBr}\text{-M}] = \frac{k_{5'}[\text{HOBr}\text{-HOSO}_{2}^{-}][\text{M}]}{k_{-5'} + k_{6'}} \quad (8'-1)$$

$$k_{1'}[\text{HOBr}][\text{HOSO}_{2}^{-}] - k_{-1'}[\text{HOBr}\text{-HOSO}_{2}^{-}] - k_{5'}[\text{HOBr}\text{-HOSO}_{2}^{-}][\text{M}] = 0$$

$$[\text{HOBr}\text{-HOSO}_{2}^{-}] = \frac{k_{1'}}{k_{-1'} + k_{5'}[\text{M}]} [\text{HOBr}][\text{HOSO}_{2}^{-}] \quad (8'-2)$$

$$v_{2\text{HOBr}+\text{HOSO}_{2},\text{cat}} = \frac{d[\text{SO}_{4}^{2^{-}}]}{dt} = \frac{k_{1'}}{k_{-1'} + k_{5'}[\text{M}]} \times \frac{k_{5'} \times k_{6'}}{k_{-5'} + k_{6'}} [\text{M}][\text{HOBr}][\text{HOSO}_{2}^{-}] \quad (8'-3)$$

The pseudo-unimolecular catalyzed S(IV) oxidation rate through Pathway 2(HOBr + HOSO₂⁻) can be written as

$$v_{2\text{HOBr} + \text{HOSO}_{2}, \text{ cat}-S(\text{IV})} = \frac{k_{1'}}{k_{-1'} + k_{5'}[\text{M}]} \times \frac{k_{5'} \times k_{6'}}{k_{-5'} + k_{6'}} [\text{M}][\text{HOBr}] \quad (8'-4)$$

where $k_{5'}/k_{-5'}$ symbolize the forward/reverse rate coefficients for the reaction 5' and $k_{6'}$ is the unimolecular rate constant for the catalyzed reaction 6'. [M] is the concentration

of catalyst M.

3.1.3 S(IV) oxidation rates, related reaction rate constants and S(IV) lifetimes through Pathway 1(HOBr + HOSO₂⁻) and Pathway 2(HOBr + HOSO₂⁻)

Table S2. Calculated forward/reverse rate coefficients $(k_1/k_{-1}, k_4/k_{-4}, k_8/k_{-8})$, diffusion rate constant k_2 , the unimolecular rate constants (k_5, k_9) for the sulfate formation between HOBr and HOSO₂⁻ through Pathway 1(HOBr + HOSO₂⁻).

Catalyst	Rate constants		Rate constants	
Without catalyst	k_1	7.44×10 ⁹ M ⁻¹ s ⁻¹	<i>k</i> ₋₁	5.65×10 ¹⁰ s ⁻¹
	k_4	7.81×10 ⁹ M ⁻¹ s ⁻¹	k_{-4}	5.57×10 ⁹ s ⁻¹
	k_5	8.05×10 ⁻²⁸ s ⁻¹		
(H ₂ O-catalyzed)	k_8	7.81×10 ⁹ M ⁻¹ s ⁻¹	k_{-8}	1.38×10 ¹¹ s ⁻¹
	k_9	2.27×10 ⁻⁸ s ⁻¹		
(H ₂ SO ₄ -catalyzed)	k_2	$7.48 \times 10^9 M^{-1} s^{-1}$		
	k_8	7.44×10 ⁹ M ⁻¹ s ⁻¹	k_{-8}	2.14×10 ⁸ s ⁻¹
	k_9	4.96×10 ⁻⁹ s ⁻¹		
(HSO ₄ -catalyzed)	k_2	3.24×10 ⁹ M ⁻¹ s ⁻¹		
	k_8	3.23×10 ⁹ M ⁻¹ s ⁻¹	k_{-8}	3.23×10 ⁹ s ⁻¹
	k_9	7.39×10 ⁻⁸ s ⁻¹		

Table S3. Calculated forward/reverse rate coefficients $(k_1 \cdot / k_{-1} \cdot, k_5 \cdot / k_{-5} \cdot)$, the unimolecular rate constants $(k_2 \cdot, k_6 \cdot)$ for the sulfate formation between HOBr and HOSO₂⁻ through Pathway 2(HOBr + HOSO₂⁻).

Catalyst	Rate constants		Rate constants	
Without catalyst	k_1 ,	7.44×10 ⁹ M ⁻¹ s ⁻¹	<i>k</i> -1'	6.68×10 ¹⁰ s ⁻¹
	k_{2} ,	1.21×10 ⁻⁴ s ⁻¹		
(H ₂ O-catalyzed)	k_{5} ,	7.92×10 ⁹ M ⁻¹ s ⁻¹	<i>k</i> -5'	1.63×10 ⁸ s ⁻¹
	k_{6} ,	1.61×10 ⁻⁵ s ⁻¹		
(H ₂ SO ₄ -catalyzed)	k_{5} ,	7.48×10 ⁹ M ⁻¹ s ⁻¹	<i>k</i> -5'	1.54×10 ⁻³ s ⁻¹
	k_{6} ,	7.00×10 ⁻¹² s ⁻¹		
(HSO4 ⁻ -catalyzed)	k_{5} ,	3.24×10 ⁹ M ⁻¹ s ⁻¹	<i>k</i> -5'	2.86×107 s ⁻¹
	k_{6} ,	6.43×10 ⁻⁵ s ⁻¹		

Table S4. Calculated overall rate constant, effective rate constant, S(IV) oxidation rate and the S(IV) lifetimes for Pathway 1(HOBr + HOSO₂⁻) and Pathway 2(HOBr + HOSO₂⁻) from HOSO₂⁻ and HOBr respectively, assuming [HOBr] =5.89 × 10⁻⁷ M (corresponding to a Henry's law equilibrium with a gas phase HOBr mixing ratio of 0.31 ppbv), and [H₂O] =55.56 M (corresponding to the known bulk concentration of

TT	()
H_2	(J).
	$\sim r$

Dete e e ete ete	Catalanta	Overall rate	Effective rate	S(IV) oxidation	S(IV)
Rate constants	Catalysis	constant M ⁻² s ⁻¹	constant ^c (M ⁻¹ s ⁻¹)	rate (s ⁻¹)	lifetime (s)
	Without catalyst	6.61×10 ⁻³⁶	6.61×10 ⁻³⁶	3.89×10 ⁻⁴²	2.57×10^{41}
Pathway1	H ₂ O-catalyzed	1.34×10 ⁻¹⁹	7.43×10 ⁻¹⁸	4.38×10 ⁻²⁴	2.28×10^{23}
(HOBr+HOSO ₂ -)	H ₂ SO ₄ -catalyzed ^a	7.06×10 ⁻¹⁶	3.78×10 ⁻²³	2.23×10 ⁻²⁹	4.49×10^{28}
	HSO4 ⁻ -catalyzed ^b	6.07×10 ⁻¹⁶	6.50×10 ⁻²³	3.83×10 ⁻²⁹	2.61×10^{28}
	Without catalyst	1.35×10 ⁻⁵	1.35×10 ⁻⁵	7.94×10 ⁻¹²	1.26×10 ¹¹
Pathway 2	H ₂ O-catalyzed	1.15×10 ⁻⁵	6.39×10 ⁻⁴	3.76×10 ⁻¹⁰	2.66×10 ⁹
(HOBr+HOSO ₂ -)	H ₂ SO ₄ -catalyzed ^a	3.79×10^{0}	2.03×10 ⁻⁷	1.20×10 ⁻¹³	8.35×10^{12}
	HSO4 ⁻ -catalyzed ^b	8.10×10 ⁻⁴	8.68×10 ⁻¹¹	5.11×10 ⁻¹⁷	1.96×10 ¹⁶

 a Assuming a half of general concentration of H $^{+}$ act as the possible high limit for the concentration of H₂SO₄ in cloud water.

 $^{\rm b}$ Assuming a general concentration of $\rm H^+$ act as the possible high limit for the concentration of $\rm HSO_{4^-}$ in cloud water.

^c Effective rate constant = Overall rate constant \times [M], where [M] is the concentration of catalyst M.

3.2 The reaction rates between HOBr and SO₃²⁻ leading to sulfate formation.

3.2.1 The reaction rate via Pathway 1(HOBr + SO₃²⁻)

The detailed formation process of sulfate from HOBr and SO_3^{2-} through the Pathway 1(HOBr + SO_3^{2-}) is described by the following reaction equations:

$$HOBr+SO_{3}^{2-} \rightarrow [BrSO_{3}^{-}OH^{-}] \quad (1)$$

$$[BrSO_{3}^{-}OH^{-}] \rightarrow BrSO_{3}^{-}+OH^{-} (2)$$

$$BrSO_{3}^{-}+H_{2}O \leftrightarrow [BrSO_{3}^{-}-H_{2}O] (3)$$

$$[BrSO_{3}^{-}-H_{2}O] \xrightarrow{TS} [H_{2}SO_{4}^{-}-Br^{-}] (4)$$

$$[H_{2}SO_{4}^{-}-Br^{-}] \rightarrow H_{2}SO_{4}^{-}+Br^{-} (5)$$

Applying the steady-state approximation to the pre-reactive complex and assuming that the complex is in equilibrium with the reactant, we obtain the following expressions for the uncatalyzed formation reaction rate ($v_{1HOBr + SO3}^{2-}$, un) of sulfate (where k_n is the rate constant for reaction n in the scheme given above):

$$v_{1\text{HOBr}+\text{SO}_{3}^{2},\text{un}} = \frac{d[\text{SO}_{4}^{2^{-}}]}{dt} = k_{4}[\text{BrSO}_{3}\text{-H}_{2}\text{O}] \quad (6)$$

$$k_{3}[\text{BrSO}_{3}^{-}][\text{H}_{2}\text{O}] - k_{-3}[\text{BrSO}_{3}\text{-H}_{2}\text{O}] - k_{4}[\text{BrSO}_{3}^{-}\text{-H}_{2}\text{O}] = 0$$

$$[\text{BrSO}_{3}^{-}\text{-H}_{2}\text{O}] = \frac{k_{3}[\text{BrSO}_{3}^{-}][\text{H}_{2}\text{O}]}{k_{-3} + k_{4}} \quad (6-1)$$

$$k_{2}[\text{BrSO}_{3}^{-}\text{-OH}^{-}] - k_{3}[\text{BrSO}_{3}^{-}][\text{H}_{2}\text{O}] = 0$$

$$[\text{BrSO}_{3}^{-}] = \frac{k_{2}[\text{BrSO}_{3}^{-}\text{-OH}^{-}]}{k_{3}[\text{H}_{2}\text{O}]} \quad (6-2)$$

$$k_{1}[\text{HOBr}][\text{SO}_{3}^{2^{-}}] - k_{2}[\text{BrSO}_{3}^{-}\text{-OH}^{-}] = 0$$

$$[\text{BrSO}_{3}^{-}\text{-OH}^{-}] = \frac{k_{1}[\text{HOBr}][\text{SO}_{3}^{2^{-}}]}{k_{2}} \quad (6-3)$$

$$v_{1\text{HOBr}+\text{SO}_{3}^{-},\text{un}} = \frac{d[\text{SO}_{4}^{2^{-}}]}{dt} = \frac{k_{4} \times k_{1}}{k_{-3} + k_{4}} [\text{HOBr}][\text{SO}_{3}^{2^{-}}] \quad (6-4)$$

The pseudo-unimolecular uncatalyzed S(IV) oxidation rates through Pathway 1(HOBr + SO₃²⁻) can be written as

$$v_{1\text{HOBr} + \text{SO}_{3}^{2},\text{un-S(IV)}} = \frac{k_4 \times k_1}{k_{-3} + k_4} [\text{HOBr}] (6-6)$$

where k_1 is the diffusion rate constant between HOBr and SO₃²⁻, k_{-3} is the reverse rate

coefficients for the reaction 3 and k_4 is the unimolecular rate constant for the uncatalyzed reaction 4.

The possible formation process of sulfate from $BrSO_3^-$ and OH^- is described by the following reaction equations:

HOBr+SO₃²⁻→[BrSO₃⁻-OH⁻]₁ (1)
[BrSO₃⁻-OH⁻]₁ ↔ [BrSO₃⁻-OH⁻]₂ (7)
[BrSO₃⁻-OH⁻]₂
$$\xrightarrow{\text{TS}}$$
 [HSO₄⁻-Br⁻] (8)
[HSO₄⁻-Br⁻]→HSO₄⁻+Br⁻ (9)

Applying the steady-state approximation to the pre-reactive complex and assuming that the complex is in equilibrium with the reactant, we obtain the following expressions for the uncatalyzed formation reaction rate $(v_{1HOBr+SO3}^{2^2}-2, un)$ of sulfate (where k_n is the rate constant for reaction n in the scheme given above):

$$v_{1\text{HOBr}+\text{SO}_{3}^{2}\text{-}2,\text{ un}} = \frac{d[\text{SO}_{4}^{2}\text{-}]}{dt} = k_{8}[\text{BrSO}_{3}^{-}\text{OH}^{-}] (10)$$

$$k_{7}[\text{BrSO}_{3}^{-}\text{OH}^{-}]_{1} - k_{-7}[\text{BrSO}_{3}^{-}\text{OH}^{-}]_{2} - k_{8}[\text{BrSO}_{3}^{-}\text{OH}^{-}]_{2} = 0$$

$$[\text{BrSO}_{3}^{-}\text{OH}^{-}]_{2} = \frac{k_{7}[\text{BrSO}_{3}^{-}\text{OH}^{-}]_{1}}{k_{-7} + k_{8}} (10\text{-}1)$$

$$k_{1}[\text{HOBr}][\text{SO}_{3}^{2}\text{-}] - k_{7}[\text{BrSO}_{3}^{-}\text{OH}^{-}]_{1} = 0$$

$$[\text{BrSO}_{3}^{-}\text{OH}^{-}]_{1} = \frac{k_{1}[\text{HOBr}][\text{SO}_{3}^{2}\text{-}]}{k_{7}} (10\text{-}2)$$

$$v_{1\text{HOBr}+\text{SO}_{3}^{2}\text{-}2,\text{ un}} = \frac{d[\text{SO}_{4}^{2}\text{-}]}{dt} = \frac{k_{8} \times k_{1}}{k_{-7} + k_{8}} [\text{HOBr}][\text{SO}_{3}^{2}\text{-}] (10\text{-}3)$$

The pseudo-unimolecular uncatalyzed S(IV) oxidation rate through Pathway 1(HOBr+ SO_3^{2-}) can be written as

$$v_{1\text{HOBr}+\text{SO}_{3}^{2-}-2,\text{un-S(IV)}} = \frac{d[\text{SO}_{4}^{2-}]}{dt} = \frac{k_8 \times k_1}{k_{-7} + k_8} [\text{HOBr}] \quad (10-4)$$

where k_7/k_{-7} symbolize the forward/reverse rate coefficients for the reaction 7 and k_8 is the unimolecular rate constant for the reaction 8.

The catalyzed formation process of sulfate from HOBr and SO₃²⁻ through Pathway

 $1(\text{HOBr} + \text{SO}_3^{2-})$ is similarly described by the following reaction equations:

HOBr+SO₃²⁻→[BrSO₃⁻-OH⁻] (1)
[BrSO₃⁻-OH⁻] →BrSO₃⁻+OH⁻ (2)
BrSO₃⁻+H₂O ↔ [BrSO₃⁻-H₂O] (3)
[BrSO₃⁻-H₂O]+M↔[BrSO₃⁻-H₂O-M] (11)
[BrSO₃⁻-H₂O-M]
$$\xrightarrow{\text{TS}}$$
 [H₂SO₄-Br⁻-M] (12)
[H₂SO₄-Br⁻-M]→H₂SO₄ + Br⁻ + M (13)

Applying the steady-state approximation to the pre-reactive complex and assuming that the complex is in equilibrium with the reactant, we obtain the following expressions for the catalyzed formation reaction rate ($v_{1HOBr} + so_3^{2-}$, cat) of sulfate (where k_n is the rate constant for reaction n in the scheme given above):

$$v_{1\text{HOBr}+\text{SO}_{3}^{2},\text{cat}} = \frac{d[\text{SO}_{4}^{2^{-}}]}{dt} = k_{12}[\text{BrSO}_{3}\text{-H}_{2}\text{O}\text{-M}] \quad (14)$$

$$k_{11}[\text{BrSO}_{3}\text{-H}_{2}\text{O}][\text{M}] - k_{.11}[\text{BrSO}_{3}\text{-H}_{2}\text{O}\text{-M}] - k_{12}[\text{BrSO}_{3}\text{-H}_{2}\text{O}\text{-M}] = 0$$

$$[\text{BrSO}_{3}^{-}\text{H}_{2}\text{O}\text{-M}] = \frac{k_{11}[\text{BrSO}_{3}^{-}\text{H}_{2}\text{O}][\text{M}]}{k_{.11} + k_{12}} \quad (14\text{-}1)$$

$$k_{3}[\text{BrSO}_{3}^{-}][\text{H}_{2}\text{O}] - k_{.3}[\text{BrSO}_{3}^{-}\text{H}_{2}\text{O}] - k_{11}[\text{BrSO}_{3}^{-}\text{H}_{2}\text{O}][\text{M}] = 0$$

$$[\text{BrSO}_{3}^{-}\text{H}_{2}\text{O}] = \frac{k_{3}[\text{BrSO}_{3}^{-}][\text{H}_{2}\text{O}]}{k_{.3} + k_{11}[\text{M}]} \quad (14\text{-}2)$$

$$k_{2}[\text{BrSO}_{3}\text{-H}_{2}\text{O}] = \frac{k_{3}[\text{BrSO}_{3}^{-}][\text{H}_{2}\text{O}] = 0$$

$$[\text{BrSO}_{3}^{-}\text{-H}_{2}\text{O}] = \frac{k_{2}[\text{BrSO}_{3}^{-}][\text{H}_{2}\text{O}] = 0$$

$$[\text{BrSO}_{3}^{-}] = \frac{k_{2}[\text{BrSO}_{3}^{-}\text{OH}^{-}]}{k_{3}[\text{H}_{2}\text{O}]} \quad (14\text{-}3)$$

$$k_{1}[\text{HOBr}][\text{SO}_{3}^{2^{-}}] - k_{2}[\text{BrSO}_{3}\text{-OH}^{-}] = 0$$

$$[\text{BrSO}_{3}^{-}\text{OH}^{-}] = \frac{k_{1}[\text{HOBr}][\text{SO}_{3}^{2^{-}}]}{k_{2}} \quad (14\text{-}4)$$

$$d[\text{SO}_{4}^{2^{-}}] \quad k_{12} \times k_{11} \qquad k_{1} \qquad (\text{HOBr})[\text{BrO}_{3}^{-1}] \quad (14\text{-}4)$$

$$v_{1\text{HOBr}+\text{SO}_{3}^{2},\text{cat}} = \frac{d[SO_{4}]}{dt} = \frac{k_{12} \times k_{11}}{k_{-11} + k_{12}} \times \frac{k_{1}}{k_{-3} + k_{11}[M]} \times [\text{HOBr}][SO_{3}^{2}][M] (14-5)$$

The pseudo-unimolecular catalyzed S(IV) oxidation rate through Pathway 1(HOBr + SO_3^{2-}) can then be written as

$$v_{1\text{HOBr}+\text{SO}_{3}^{2-},\text{cat-S(IV)}} = \frac{k_{12} \times k_{11}}{k_{-11} + k_{12}} \times \frac{k_{1}}{k_{-3} + k_{11}[\text{M}]} \times [\text{HOBr}][\text{M}] (14-6)$$

where k_{11}/k_{-11} symbolize the forward/reverse rate coefficients for the reaction 11 and

 k_{12} is the unimolecular rate constant for the catalyzed reaction 12.

The catalyzed formation process of sulfate from $BrSO_3^-$ and OH^- is described by the following reaction equations:

$$HOBr + SO_3^{2-} \rightarrow [BrSO_3^{-}OH^{-}]_1 \quad (1)$$

$$[BrSO_3^{-}OH^{-}]_1 \leftrightarrow [BrSO_3^{-}OH^{-}]_2 \quad (7)$$

$$[BrSO_3^{-}OH^{-}]_2 + M \leftrightarrow [BrSO_3^{-}OH^{-}-M] \quad (15)$$

$$[BrSO_3^{-}OH^{-}-M] \xrightarrow{TS} [HSO_4^{-}Br^{-}-M] \quad (16)$$

$$[HSO_4^{-}Br^{-}-M] \rightarrow HSO_4^{-}+Br^{-}+M \quad (17)$$

Applying the steady-state approximation to the pre-reactive complex and assuming that the complex is in equilibrium with the reactant, we obtain the following expressions for the catalyzed formation reaction rate ($v_{1HOBr + SO3}^{2-}$, cat) of sulfate (where k_n is the rate constant for reaction n in the scheme given above):

$$v_{1\text{HOBr}+\text{SO}_{3}^{2}\text{-}2,\text{cat}} = \frac{d[\text{SO}_{4}^{2}\text{-}]}{dt} = k_{16}[\text{BrSO}_{3}^{2}\text{-}\text{OH}^{-}\text{M}] (18)$$

$$k_{15}[\text{BrSO}_{3}^{2}\text{-}\text{OH}^{-}]_{2}[\text{M}] - k_{-15}[\text{BrSO}_{3}^{2}\text{-}\text{OH}^{-}\text{M}] - k_{16}[\text{BrSO}_{3}^{2}\text{-}\text{OH}^{-}\text{M}] = 0$$

$$[\text{BrSO}_{3}^{2}\text{-}\text{OH}^{-}\text{M}] = \frac{k_{15}[\text{BrSO}_{3}^{2}\text{-}\text{OH}^{-}]_{2}[\text{M}]}{k_{-15} + k_{16}} (18\text{-}1)$$

$$k_{7}[\text{BrSO}_{3}^{2}\text{-}\text{OH}^{-}]_{1} - k_{-7}[\text{BrSO}_{3}^{2}\text{-}\text{OH}^{-}]_{2} - k_{15}[\text{BrSO}_{3}^{2}\text{-}\text{OH}^{-}]_{2}[\text{M}]$$

$$[\text{BrSO}_{3}^{2}\text{-}\text{OH}^{-}]_{2} = \frac{k_{7}[\text{BrSO}_{3}^{2}\text{-}\text{OH}^{-}]_{1}}{k_{-7} + k_{15}[\text{M}]} (18\text{-}2)$$

$$k_{1}[\text{HOBr}][\text{SO}_{3}^{2}^{-}] - k_{7}[\text{BrSO}_{3}^{2}\text{-}\text{OH}^{-}]_{1} = 0$$

$$[\text{BrSO}_{3}^{2}\text{-}\text{OH}^{-}]_{1} = \frac{k_{1}[\text{HOBr}][\text{SO}_{3}^{2}^{-}]}{k_{8}} (18\text{-}3)$$

$$v_{1\text{HOBr}+\text{SO}_{3}^{2}\text{-}2,\text{cat}} = \frac{d[\text{SO}_{4}^{2^{-}}]}{dt} = \frac{k_{16} \times k_{15}}{k_{-15} + k_{16}} \times \frac{k_{1}}{k_{-7} + k_{15}[\text{M}]} \times [\text{HOBr}][\text{SO}_{3}^{2^{-}}][\text{M}] \quad (18-4)$$

The pseudo-unimolecular catalyzed S(IV) oxidation rate through Pathway 1(HOBr+ SO_3^{2-}) can be written as

$$v_{1\text{HOBr}+\text{SO}_{3}^{2}\text{-}2,\text{cat-S(IV)}} = \frac{d[\text{SO}_{4}^{2^{-}}]}{dt} = \frac{k_{16} \times k_{15}}{k_{-15} + k_{16}} \times \frac{k_{1}}{k_{-7} + k_{15}[\text{M}]} \times [\text{HOBr}][\text{M}] \quad (18-5)$$

where k_{15}/k_{-15} symbolize the forward/reverse rate coefficients for the reaction 15 and k_{16} is the unimolecular rate constant for the reaction 16.

3.2.2 The reaction rate via Pathway 2(HOBr + SO₃²⁻)

The detailed formation process of sulfate from HOBr and SO_3^{2-} through the Pathway 2(HOBr + SO_3^{2-}) is described by the following reaction equations:

HOBr + SO₃²⁻ ↔ [HOBr-SO₃²⁻] (1')
[HOBr-SO₃²⁻]
$$\xrightarrow{\text{TS}}$$
 [HSO₄⁻-Br⁻] (2')
[HSO₄⁻-Br⁻] → HSO₄⁻+Br⁻ (3')

Applying the steady-state approximation to the pre-reactive complex and assuming that the complex is in equilibrium with the reactant, we obtain the following expressions for the formation reaction rate $(v_{2HOBr + SO3}^{2-}, un)$ of sulfate (where k_n is the rate constant for reaction n in the scheme given above):

$$v_{2\text{HOBr}+\text{SO}_{3}^{2-},\text{un}} = \frac{d[\text{SO}_{4}^{2-}]}{dt} = k_{2'}[\text{HOBr}-\text{SO}_{3}^{2-}] \quad (4')$$

$$k_{1'}[\text{HOBr}][\text{SO}_{3}^{2-}] - k_{-1'}[\text{HOBr}-\text{SO}_{3}^{2-}] - k_{2'}[\text{HOBr}-\text{SO}_{3}^{2-}] = 0$$

$$[\text{HOBr}-\text{SO}_{3}^{2-}] = \frac{k_{1'}[\text{HOBr}][\text{SO}_{3}^{2-}]}{k_{-1'} + k_{2'}} \quad (4'-1)$$

$$v_{2\text{HOBr}+\text{SO}_{3}^{2-},\text{un}} = \frac{d[\text{SO}_{4}^{2-}]}{dt} = \frac{k_{1'} \times k_{2'}}{k_{-1'} + k_{2'}} [\text{HOBr}][\text{SO}_{3}^{2-}] \quad (4'-2)$$

The pseudo-unimolecular catalyzed S(IV) oxidation rates through Pathway 2(HOBr + SO_3^{2-}) can be written as

$$v_{2\text{HOBr}+\text{SO}_3^2,\text{un}-\text{S(IV)}} = \frac{k_{1'} \times k_{2'}}{k_{-1'} + k_{2'}} [\text{HOBr}] (4'-3)$$

where $k_{1'}/k_{-1'}$ symbolize the forward/reverse rate coefficients for the reaction 1', and $k_{2'}$ is the unimolecular rate constant for the reaction 2'.

The catalyzed formation process of sulfate from HOBr and SO_3^{2-} through Pathway 2(HOBr + SO_3^{2-}) is described by the following reaction equations:

$$[SO_3^{2-}HOBr-M] \xrightarrow{1S} [H_2SO_4-Br^--M] (6')$$
$$[H_2SO_4-Br^--M] \rightarrow H_2SO_4+Br^-+M (7')$$

Applying the steady-state approximation to the pre-reactive complex and assuming that the complex is in equilibrium with the reactant, we obtain the following expressions for the catalyzed formation reaction rate ($v_{2HOBr} + so_3^{2-}$, cat) of sulfate (where k_n is the rate constant for reaction n in the scheme given above):

$$v_{2\text{HOBr}+\text{SO}_{3}^{2^{-}},\text{cat}} = \frac{d[\text{SO}_{4}^{2^{-}}]}{dt} = k_{6'}[\text{SO}_{3}^{2^{-}}-\text{HOBr}-\text{M}] \quad (8')$$

$$k_{5'}[\text{HOBr}-\text{SO}_{3}^{2^{-}}][\text{M}]-k_{-5'}[\text{SO}_{3}^{2^{-}}-\text{HOBr}-\text{M}]-k_{6'}[\text{SO}_{3}^{2^{-}}-\text{HOBr}-\text{M}] = 0$$

$$[\text{SO}_{3}^{2^{-}}-\text{HOBr}-\text{M}] = \frac{k_{5'}[\text{HOBr}-\text{SO}_{3}^{2^{-}}][\text{M}]}{k_{-5'}+k_{6'}} \quad (8'-1)$$

$$k_{1'}[\text{HOBr}][\text{SO}_{3}^{2^{-}}]-k_{-1'}[\text{HOBr}-\text{SO}_{3}^{2^{-}}]-k_{5'}[\text{HOBr}-\text{SO}_{3}^{2^{-}}][\text{M}] = 0$$

$$[\text{HOBr}-\text{SO}_{3}^{2^{-}}] = \frac{k_{1'}[\text{HOBr}][\text{SO}_{3}^{2^{-}}]}{k_{-1'}+k_{5'}[\text{M}]} \quad (8'-2)$$

$$v_{2\text{HOBr}+\text{SO}_{3}^{2^{-}},\text{cat}} = \frac{d[\text{SO}_{4}^{2^{-}}]}{dt} = \frac{k_{5'} \times k_{6'}}{k_{-5'}+k_{6'}} \times \frac{k_{1'}}{k_{-1'}+k_{5'}[\text{M}]} \times [\text{M}][\text{HOBr}][\text{SO}_{3}^{2^{-}}] \quad (8'-3)$$

The pseudo-unimolecular catalyzed S(IV) oxidation rate through Pathway 2(HOBr+ SO_3^{2-}) can be written as

$$v_{2\text{HOBr} + \text{SO}_{3}^{2-}, \text{cat} - \text{S}(\text{IV})} = \frac{k_{5'} \times k_{6'}}{k_{-5'} + k_{6'}} \times \frac{k_{1'}}{k_{-1'} + k_{5'}[\text{M}]} \times [\text{M}][\text{HOBr}] \quad (8'-4)$$

where $k_{5'}/k_{-5'}$ symbolize the forward/reverse rate coefficients for the reaction 5' and $k_{6'}$ is the unimolecular rate constant for the catalyzed reaction 6'. [M] is the concentration of catalyst M.

3.2.3 S(IV) oxidation rates, related reaction rate constants and S(IV) lifetimes through Pathway 1(HOBr + SO₃²⁻) and Pathway 2(HOBr + SO₃²⁻)

Table S5. Calculated diffusion rate constant (k_1) between HOBr and SO₃²⁻, the forward/reverse rate coefficients $(k_3/k_{-3}, k_7/k_{-7}, k_{11}/k_{-11}, k_{15}/k_{-15})$, and the unimolecular rate constants $(k_4, k_8, k_{12}, k_{16})$ for the sulfate formation between HOBr and SO₃²⁻ through Pathway 1(HOBr + SO₃²⁻).

Catalyst	Rate constants		Rate constants	
Without	k_1	7.45×10 ⁹ M ⁻¹ s ⁻¹		
	k_3	$7.81 \times 10^9 M^{-1} s^{-1}$	<i>k</i> -3	5.57×10 ⁹ s ⁻¹
	k_4	8.05×10 ⁻²⁸ s ⁻¹		
	k_7	$1.44 \times 10^9 \text{s}^{-1}$	<i>k</i> -7	3.34×10 ⁹ s ⁻¹
	k_8	1.03 s ⁻¹		
(H ₂ O-catalyzed)	k_{11}	7.81×10 ⁹ M ⁻¹ s ⁻¹	<i>k</i> -11	1.38×10 ¹¹ s ⁻¹
	k_{12}	2.27×10 ⁻⁸ s ⁻¹		
	k_{15}	7.98×10 ⁹ M ⁻¹ s ⁻¹	<i>k</i> ₋₁₅	1.26×10 ¹² s ⁻¹
	k_{16}	4.70 s ⁻¹		
(HSO4-catalyzed)	k_{11}	3.23×10 ⁹ M ⁻¹ s ⁻¹	<i>k</i> -11	3.23×10 ⁹ s ⁻¹
	k_{12}	7.39×10 ⁻⁸ s ⁻¹		
	k_{15}	3.25×10 ⁹ M ⁻¹ s ⁻¹	<i>k</i> -15	2.04×10 ⁻⁴ s ⁻¹
	k_{16}	1.25×10 ⁻⁴ s ⁻¹		

Table S6. Calculated forward/reverse rate coefficients $(k_{1'}/k_{-1'}, k_{5'}/k_{-5'})$, and the unimolecular rate constant $(k_{2'}, k_{6'})$ for the sulfate formation between HOBr and SO₃²⁻ through Pathway 2(HOBr + SO₃²⁻).

Catalyst	Rate constants		Rate constants	
Without catalyst	k_{1} ,	7.45×10 ⁹ M ⁻¹ s ⁻¹	k_{-1} ,	4.49×10 ⁹ s ⁻¹
	k_2 ,	3.50×10 ⁵ s ⁻¹		
(H ₂ O-catalyzed)	k_{5} ,	7.96×10 ⁹ M ⁻¹ s ⁻¹	<i>k</i> -5'	3.42×10 ⁹ s ⁻¹
	k_{6}	4.18×10 ⁵ s ⁻¹		
(HSO4 ⁻ -catalyzed)	k_{5} ,	3.24×10 ⁹ M ⁻¹ s ⁻¹	<i>k</i> -5'	1.12 s ⁻¹
	k_{6} ,	5.19×10 ⁻³ s ⁻¹		

Table S7. Calculated overall rate constant, effective rate constant, S(IV) oxidation rate and the S(IV) lifetimes for Pathway 1(HOBr + SO₃²⁻) and Pathway 2 (HOBr + SO₃²⁻) from SO₃²⁻ and HOBr respectively, assuming [HOBr] = 5.89×10^{-7} M (corresponding to a Henry's law equilibrium with a gas phase HOBr mixing ratio of 0.31 ppbv), and [H₂O] = 55.56 M (corresponding to the known bulk concentration of H₂O).

Dete constante Cetalente		Overall rate	Effective rate	S(IV) oxidation	S(IV)
Rate constants	Catalysis	constant M ⁻² s ⁻¹	constant $^{d}(M^{-1}s^{-1})$	rate (s ⁻¹)	lifetime (s)
Dotherson 1 a	Without catalyst	1.08×10 ⁻²⁷	1.08×10 ⁻²⁷	6.34×10 ⁻³⁴	1.58×10 ³³
Pathway 1 a H_2O -catalyzed $(HOBr + SO_3^{2-})$ HSO_4^- -catalyzed c	2.18×10 ⁻¹¹	1.21×10 ⁻⁹	7.13×10 ⁻¹⁶	1.40×10^{15}	
	HSO4 ⁻ -catalyzed ^c	9.88×10 ⁻⁸	1.24×10 ⁻¹⁶	7.33×10 ⁻²³	1.36×10 ²²
Detheres 1 b	Without catalyst	2.30	2.30	1.35×10 ⁻⁶	7.39×10 ⁵
Pathway I $^{\circ}$	H ₂ O-catalyzed	1.24×10^{1}	6.90×10^{2}	4.07×10 ⁻⁴	2.46×10^{3}
$(HOBT + SO_3^2)$ HSO_4^2-c	HSO4 ⁻ -catalyzed ^c	2.74×10 ⁹	3.45×10^{0}	2.03×10 ⁻⁶	4.92×10 ⁵
Pathway 2	Without catalyst	5.80×10 ⁵	5.80×10 ⁵	3.42×10 ⁻¹	2.93×10^{0}
$(HOBr + SO_3^{2-})$	H ₂ O-catalyzed	1.62×10^{4}	9.01×10 ⁵	5.31×10 ⁻¹	1.88×10^{0}

HSO4 ⁻ -catalyzed ^c	2.48×10^{7}	3.12×10 ⁻²	1.84×10 ⁻⁸	5.44×10^{7}
---	----------------------	-----------------------	-----------------------	----------------------

^a The second step of Pathway $1(\text{HOBr} + \text{SO}_3^2)$ leading to sulfate formation through the hydrolysis reaction.

^b The second step of Pathway $1(HOBr + SO_3^{2-})$ leading to sulfate formation through the reaction of $BrSO_3^{-}$ intermediate with OH⁻.

 $^{\rm c}$ Assuming a general concentration of $\rm H^+$ act as the possible high limit for the concentration of $\rm HSO_{4^-}$ in cloud water.

^d Effective rate constant = Overall rate constant \times [M], where [M] is the concentration of catalyst M.

3.3 The reaction rates between OBr⁻ and SO₃²⁻ leading to sulfate formation.

3.3.1 The reaction rate via Pathway 1(OBr⁻ + SO₃²⁻)

The detailed formation process of sulfate from OBr^{-} and SO_3^{2-} through Pathway $1(OBr^{-} + SO_3^{2-})$ is described by the following reaction equations:

$$OBr^{-}+SO_{3}^{2-} \leftrightarrow [OBr^{-}-SO_{3}^{2-}] (1)$$

$$[OBr^{-}-SO_{3}^{2-}] \xrightarrow{TS} [BrSO_{3}^{-}-O^{2-}] (2)$$

$$[BrSO_{3}^{-}-O^{2-}] \rightarrow BrSO_{3}^{-}+O^{2-} (3)$$

$$BrSO_{3}^{-}+H_{2}O \leftrightarrow [BrSO_{3}^{-}-H_{2}O] (4)$$

$$[BrSO_{3}^{-}-H_{2}O] \xrightarrow{TS} [H_{2}SO_{4}^{-}-Br^{-}] (5)$$

$$[H_{2}SO_{4}^{-}-Br^{-}] \rightarrow H_{2}SO_{4}^{+}+Br^{-} (6)$$

Applying the steady-state approximation to the pre-reactive complex and assuming that the complex is in equilibrium with the reactant, we obtain the following expressions for the uncatalyzed formation reaction rate $(v_{10Br} + s_{03}^{2^-}, u_n)$ of sulfate (where k_n is the rate constant for reaction n in the scheme given above):

$$v_{10Br^{-}+SO_{3}^{2},un} = \frac{d[SO_{4}^{2^{-}}]}{dt} = k_{5}[BrSO_{3}^{-}H_{2}O] \quad (7)$$

$$k_{4}[BrSO_{3}^{-}][H_{2}O] - k_{-4}[BrSO_{3}^{-}H_{2}O] - k_{5}[BrSO_{3}^{-}H_{2}O] = 0$$

$$[BrSO_{3}^{-}-H_{2}O] = \frac{k_{4}[BrSO_{3}^{-}][H_{2}O]}{k_{-4} + k_{5}} \quad (7-1)$$

$$k_{3}[BrSO_{3}^{-}-O^{2^{-}}] - k_{4}[BrSO_{3}^{-}][H_{2}O] = 0$$

$$[BrSO_{3}^{-}] = \frac{k_{3}[BrSO_{3}^{-}-O^{2^{-}}]}{k_{4}[H_{2}O]} \quad (7-2)$$

$$k_{2}[OBr^{-}-SO_{3}^{2^{-}}] - k_{3}[BrSO_{3}^{-}-O^{2^{-}}] = 0$$

$$[BrSO_{3}^{-}-O^{2^{-}}] = \frac{k_{2}[OBr^{-}-SO_{3}^{2^{-}}]}{k_{3}} \quad (7-3)$$

$$k_{1}[OBr^{-}][SO_{3}^{2^{-}}] - k_{-1}[OBr^{-}-SO_{3}^{2^{-}}] - k_{2}[OBr^{-}-SO_{3}^{2^{-}}] = 0$$

$$[OBr^{-}-SO_{3}^{2^{-}}] = \frac{k_{1}[OBr^{-}][SO_{3}^{2^{-}}]}{k_{-1} + k_{2}} \quad (7-4)$$

$$v_{10Br^{-}+SO_{3}^{2},un} = \frac{d[SO_{4}^{2-}]}{dt} = \frac{k_{5}}{k_{-4}+k_{5}} \times \frac{k_{2} \times k_{1}}{k_{-1}+k_{2}} [OBr^{-}][SO_{3}^{2-}] (7-6)$$

The pseudo-unimolecular uncatalyzed S(IV) oxidation rate through Pathway 1($OBr^- + SO_3^{2-}$) can be written as

$$v_{1\text{OBr}^- + \text{SO}_3^2}, \text{un-S(IV)} = \frac{k_5}{k_{-4} + k_5} \times \frac{k_2 \times k_1}{k_{-1} + k_2} [\text{OBr}^-][\text{SO}_3^2] (7-7)$$

where k_1/k_{-1} and k_{-4} symbolize the forward/reverse and reverse rate coefficients for the reactions 1 and 4, respectively, as well as k_2 and k_5 are the unimolecular rate constants for the uncatalyzed reactions 2 and 5.

The possible formation process of sulfate from $BrSO_3^-$ and OH^- is described by the following reaction equations:

$$OBr^{-}+SO_{3}^{2^{-}} \leftrightarrow [OBr^{-}-SO_{3}^{2^{-}}] \quad (1)$$

$$[OBr^{-}-SO_{3}^{2^{-}}] \xrightarrow{TS} [BrSO_{3}^{-}-O^{2^{-}}] \quad (2)$$

$$[BrSO_{3}^{-}-O^{2^{-}}] \rightarrow BrSO_{3}^{-}+O^{2^{-}} \quad (3)$$

$$BrSO_{3}^{-}+OH^{-} \leftrightarrow [BrSO_{3}^{-}-OH^{-}] \quad (8)$$

$$[BrSO_{3}^{-}-OH^{-}] \xrightarrow{TS} [HSO_{4}^{-}-Br^{-}] \quad (9)$$

$$[HSO_{4}^{-}-Br^{-}] \rightarrow HSO_{4}^{-}+Br^{-} \quad (10)$$

Applying the steady-state approximation to the pre-reactive complex and assuming that the complex is in equilibrium with the reactant, we obtain the following expressions for the uncatalyzed formation reaction rate $(v_{10Br} + s_{03}^{2} - 2, u_n)$ of sulfate (where k_n is the rate constant for reaction n in the scheme given above):

$$v_{10Br^{-}+SO_{3}^{2}-2,un} = \frac{d[SO_{4}^{2^{-}}]}{dt} = k_{9}[BrSO_{3}^{-}-OH^{-}] (11)$$

$$k_{8}[BrSO_{3}^{-}][OH^{-}]-k_{-8}[BrSO_{3}^{-}-OH^{-}]-k_{9}[BrSO_{3}^{-}-OH^{-}] = 0$$

$$[BrSO_{3}^{-}-OH^{-}] = \frac{k_{8}[BrSO_{3}^{-}][OH^{-}]}{k_{-8}+k_{9}} (11-1)$$

$$k_{3}[BrSO_{3}^{-}-O^{2^{-}}]-k_{8}[BrSO_{3}^{-}][OH^{-}]=0$$

$$[BrSO_{3}^{-}] = \frac{k_{3}[BrSO_{3}^{-}-O^{2^{-}}]}{k_{8}[OH^{-}]} (11-2)$$

$$k_{2}[OBr^{-}-SO_{3}^{2^{-}}]-k_{3}[BrSO_{3}^{-}-O^{2^{-}}]=0$$

$$[BrSO_{3}^{-}-O^{2^{-}}] = \frac{k_{2}[OBr^{-}-SO_{3}^{2^{-}}]}{k_{3}} \quad (11-3)$$

$$k_{1}[OBr^{-}][SO_{3}^{2^{-}}]-k_{-1}[OBr^{-}-SO_{3}^{2^{-}}]-k_{2}[OBr^{-}-SO_{3}^{2^{-}}] = 0$$

$$[OBr^{-}-SO_{3}^{2^{-}}] = \frac{k_{1}[OBr^{-}][SO_{3}^{2^{-}}]}{k_{-1}+k_{2}} \quad (11-4)$$

$$v_{1OBr^{-}+SO_{3}^{2^{-}}-2,un} = \frac{d[SO_{4}^{2^{-}}]}{dt} = \frac{k_{9}}{k_{-8}+k_{9}} \times \frac{k_{2} \times k_{1}}{k_{-1}+k_{2}} [OBr^{-}][SO_{3}^{2^{-}}] \quad (11-5)$$

The pseudo-unimolecular catalyzed S(IV) oxidation rate through Pathway $1(OBr^- + SO_3^{2-})$ can be written as

$$v_{1\text{OBr}^- + \text{SO}_3^2 - 2, \text{un-S(IV)}} = \frac{k_9}{k_{-8} + k_9} \times \frac{k_2 \times k_1}{k_{-1} + k_2} [\text{OBr}^-] (11-6)$$

where k_{-8} symbolizes the reverse rate coefficients for the reaction 8, and k_9 is the unimolecular rate constant for the reaction 9.

The detailed catalyzed formation process of sulfate from OBr⁻ and SO₃²⁻ through Pathway 1(OBr⁻ + SO₃²⁻) is similarly described by the following reaction equations:

$$OBr^{-}+SO_{3}^{2-} \leftrightarrow [OBr^{-}-SO_{3}^{2-}] (1)$$

$$[OBr^{-}-SO_{3}^{2-}] + M \leftrightarrow [OBr^{-}-SO_{3}^{2-}-M](12)$$

$$[OBr^{-}-SO_{3}^{2-}-M] \xrightarrow{TS} [BrSO_{3}^{-}-2OH^{-}] (13)$$

$$[BrSO_{3}^{-}-2OH^{-}] \rightarrow BrSO_{3}^{-}+2OH^{-}(14)$$

$$BrSO_{3}^{-}+H_{2}O \leftrightarrow [BrSO_{3}^{-}-H_{2}O] (4)$$

$$[BrSO_{3}^{-}-H_{2}O] + M \leftrightarrow [BrSO_{3}^{-}-H_{2}O-M] (15)$$

$$[BrSO_{3}^{-}-H_{2}O-M] \xrightarrow{TS} [H_{2}SO_{4}^{-}-Br^{-}-M] (16)$$

$$[H_{2}SO_{4}^{-}-Br^{-}-M] \rightarrow H_{2}SO_{4}^{-}+Br^{-}+M (17)$$

Applying the steady-state approximation to the pre-reactive complex and assuming that the complex is in equilibrium with the reactant, we obtain the following expressions for the catalyzed formation reaction rate $(v_{10Br}^{-} + SO3^{2-}, cat)$ of sulfate (where k_n is the rate constant for reaction n in the scheme given above):

$$\begin{aligned} v_{10Br^{+} + SO_{3}^{2}, eat} &= \frac{d[SO_{4}^{2}]}{dt} = k_{16}[BrSO_{3} - H_{2}O - M] \quad (18) \\ k_{15}[BrSO_{3} - H_{2}O][M] - k_{.15}[BrSO_{3} - H_{2}O - M] - k_{16}[BrSO_{3} - H_{2}O - M] &= 0 \\ [BrSO_{3} - H_{2}O - M] &= \frac{k_{15}[BrSO_{3} - H_{2}O][M]}{k_{.15} + k_{16}} \quad (18 - 1) \\ k_{4}[BrSO_{3}][H_{2}O] - k_{.4}[BrSO_{3} - H_{2}O] - k_{15}[BrSO_{3} - H_{2}O][M] &= 0 \\ [BrSO_{3} - H_{2}O] &= \frac{k_{4}}{k_{4}} \frac{[BrSO_{3}][H_{2}O]}{k_{.4} + k_{15}[M]} \quad (18 - 2) \\ k_{14}[BrSO_{3} - 2OH] - k_{4}[BrSO_{3}^{-}][H_{2}O] = 0 \\ [BrSO_{3}] &= \frac{k_{14}[BrSO_{3}^{-} - 2OH^{-1}]}{k_{4}[H_{2}O]} \quad (18 - 2) \\ k_{14}[BrSO_{3}^{-} - 2OH^{-1}] - k_{4}[BrSO_{3}^{-} - 2OH^{-1}] \\ [BrSO_{3}] &= \frac{k_{14}[BrSO_{3}^{-} - 2OH^{-1}]}{k_{4}[H_{2}O]} \quad (18 - 3) \\ k_{13}[OBr^{-} - SO_{3}^{2} - M] - k_{14}[BrSO_{3}^{-} - 2OH^{-1}] = 0 \\ [BrSO_{3}^{-} - 2OH^{-1}] &= \frac{k_{13}[OBr^{-} - SO_{3}^{2} - M]}{k_{14}} \quad (18 - 4) \\ k_{12}[OBr^{-} - SO_{3}^{2}^{-}][M] - k_{.12}[OBr^{-} - SO_{3}^{2}^{-}]M] \quad (18 - 4) \\ k_{12}[OBr^{-} - SO_{3}^{2}^{-}][M] - k_{.12}[OBr^{-} - SO_{3}^{2}^{-}]M] \quad (18 - 5) \\ k_{1}[OBr^{-}][SO_{3}^{2}^{-}] - k_{.1}[OBr^{-} SO_{3}^{2}^{-}] - k_{12}[OBr^{-} SO_{3}^{2}^{-}][M] = 0 \\ [OBr^{-} - SO_{3}^{2}^{-}] &= \frac{k_{12}[OBr^{-} - SO_{3}^{2}^{-}][M]}{k_{.12} + k_{13}} \quad (18 - 6) \\ k_{1}[OBr^{-}][SO_{3}^{2}^{-}] - k_{.1}[OBr^{-} SO_{3}^{2}^{-}] - k_{12}[OBr^{-} SO_{3}^{2}^{-}][M] = 0 \\ [OBr^{-} - SO_{3}^{2}^{-}] &= \frac{k_{10}[OBr^{-} SO_{3}^{2}^{-}]}{k_{.1} + k_{12}[M]} \quad (OBr^{-}][SO_{3}^{2}^{-}][M][M] \quad (18 - 7) \\ The pseudo-unimolecular catalyzed S(IV) oxidation rate through Pathway 1(OBr^{+}) \\ Horder = 0 \\ Prode = 0$$

 SO_3^{2-}) can be written as

$$\frac{v_{10Br^{-} + SO_{3}^{2}, \text{cat-S(IV)}}}{k_{-15} + k_{16}} \approx \frac{1}{k_{-4} + k_{15}[M]} \approx \frac{k_{12} \times k_{13}}{k_{-12} + k_{13}} \approx \frac{k_{1}}{k_{-1} + k_{12}[M]} [OBr^{-}][M][M]$$
(18-8)

where k_{12}/k_{-12} and k_{15}/k_{-15} symbolize the forward/reverse rate coefficients for the reactions 12 and 15, respectively, as well as k_{13} and k_{16} are the unimolecular rate constants for the catalyzed reactions 13 and 16. In addition, [M] is the concentration of catalyst M.

The catalyzed formation process of sulfate from $BrSO_3^-$ and OH^- is described by the following reaction equations:

$$OBr^{-}+SO_{3}^{2-}\leftrightarrow[OBr^{-}-SO_{3}^{2-}] (1)$$

$$[OBr^{-}-SO_{3}^{2-}]+M\leftrightarrow[OBr^{-}-SO_{3}^{2-}-M](12)$$

$$[OBr^{-}-SO_{3}^{2-}-M] \xrightarrow{TS} [BrSO_{3}^{-}-2OH^{-}] (13)$$

$$[BrSO_{3}^{-}-2OH^{-}]\rightarrow BrSO_{3}^{-}+2OH^{-} (14)$$

$$BrSO_{3}^{-}+OH^{-}\leftrightarrow[BrSO_{3}^{-}-OH^{-}] (8)$$

$$[BrSO_{3}^{-}-OH^{-}]+M\leftrightarrow[BrSO_{3}^{-}-OH^{-}-M] (19)$$

$$[BrSO_{3}^{-}-OH^{-}-M] \xrightarrow{TS} [HSO_{4}^{-}-Br^{-}-M] (20)$$

$$[HSO_{4}^{-}-Br^{-}-M]\rightarrow HSO_{4}^{-}+Br^{-}+M (21)$$

Applying the steady-state approximation to the pre-reactive complex and assuming that the complex is in equilibrium with the reactant, we obtain the following expressions for the catalyzed formation reaction rate ($v_{1OBr}^{-} + SO3^{2-}-2$, cat) of sulfate (where k_n is the rate constant for reaction n in the scheme given above):

$$v_{10Br^{-}+SO_{3}^{2}-2,cat} = \frac{d[SO_{4}^{2}]}{dt} = k_{20}[BrSO_{3}^{-}OH^{-}M] \quad (22)$$

$$k_{19}[BrSO_{3}^{-}OH^{-}][M] - k_{-19}[BrSO_{3}^{-}OH^{-}M] - k_{20}[BrSO_{3}^{-}OH^{-}M] = 0$$

$$[BrSO_{3}^{-}OH^{-}M] = \frac{k_{19}[BrSO_{3}^{-}OH^{-}][M]}{k_{-19} + k_{20}} \quad (22-1)$$

$$k_{8}[BrSO_{3}^{-}][OH^{-}] - k_{-8}[BrSO_{3}^{-}OH^{-}] - k_{19}[BrSO_{3}^{-}OH^{-}][M] = 0$$

$$[BrSO_{3}^{-}OH^{-}] = \frac{k_{8}[BrSO_{3}^{-}][OH^{-}]}{k_{-8} + k_{19}[M]} \quad (22-2)$$

$$k_{14}[BrSO_{3}^{-}-2OH^{-}] - k_{8}[BrSO_{3}^{-}][OH^{-}] = 0$$

$$[BrSO_{3}^{-}] = \frac{k_{14}[BrSO_{3}^{-}-2OH^{-}]}{k_{8}[OH^{-}]} \quad (22-3)$$

$$k_{13}[OBr^{-}SO_{3}^{2}^{-}-M] - k_{14}[BrSO_{3}^{-}-2OH^{-}] = 0$$

$$[BrSO_{3}^{-}-2OH^{-}] = \frac{k_{13}[OBr^{-}-SO_{3}^{2}^{-}-M]}{k_{14}} \quad (22-4)$$

$$k_{12}[OBr^{-}-SO_{3}^{2}^{-}][M] - k_{-12}[OBr^{-}-SO_{3}^{2}^{-}-M] - k_{13}[OBr^{-}-SO_{3}^{2}^{-}-M] = 0$$

$$\begin{bmatrix} OBr^{-} - SO_{3}^{2^{-}} - M \end{bmatrix} = \frac{k_{12} \begin{bmatrix} OBr^{-} - SO_{3}^{2^{-}} \end{bmatrix} [M]}{k_{-12} + k_{13}} \quad (22-5)$$

$$k_{1} \begin{bmatrix} OBr^{-} \end{bmatrix} \begin{bmatrix} SO_{3}^{2^{-}} \end{bmatrix} - k_{-1} \begin{bmatrix} OBr^{-} - SO_{3}^{2^{-}} \end{bmatrix} - k_{12} \begin{bmatrix} OBr^{-} - SO_{3}^{2^{-}} \end{bmatrix} \begin{bmatrix} M \end{bmatrix} = 0$$

$$\begin{bmatrix} OBr^{-} - SO_{3}^{2^{-}} \end{bmatrix} = \frac{k_{1} \begin{bmatrix} OBr^{-} \end{bmatrix} \begin{bmatrix} SO_{3}^{2^{-}} \end{bmatrix}}{k_{-1} + k_{12} \begin{bmatrix} M \end{bmatrix}} \quad (22-6)$$

$$v_{10Br^{-} + SO_{3}^{2^{-}} - 2, \text{ cat}} = \frac{d \begin{bmatrix} SO_{4}^{2^{-}} \end{bmatrix}}{dt} = \frac{k_{20} \times k_{19}}{k_{-19} + k_{20}} \times \frac{1}{k_{-8} + k_{19} \begin{bmatrix} M \end{bmatrix}} \times \frac{k_{13} \times k_{12}}{k_{-12} + k_{13}}$$

$$\times \frac{k_{1}}{k_{-1} + k_{12} \begin{bmatrix} M \end{bmatrix}} \begin{bmatrix} OBr^{-} \end{bmatrix} \begin{bmatrix} SO_{3}^{2^{-}} \end{bmatrix} \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} M \end{bmatrix} \quad (22-7)$$

The pseudo-unimolecular catalyzed S(IV) oxidation rate through Pathway 1(OBr⁻⁺ SO_3^{2-}) can be written as

$$v_{10Br^{-}+S0_{3}^{2}-2, cat-S(IV)} = \frac{k_{20} \times k_{19}}{k_{-19} + k_{20}} \times \frac{1}{k_{-8} + k_{19}[M]} \times \frac{k_{13} \times k_{12}}{k_{-12} + k_{13}}$$
$$\times \frac{k_{1}}{k_{-1} + k_{12}[M]} [OBr^{-}][M][M] \qquad (22-8)$$

where k_{19}/k_{-19} symbolize the forward/reverse rate coefficients for the reaction 19 and k_{20} is the unimolecular rate constant for the catalyzed reaction 20. In addition, [M] is the concentration of catalyst M.

3.3.2 The reaction rate via Pathway 2(OBr+SO₃²⁻)

The detailed formation process of sulfate from OBr^{-} and SO_3^{2-} through Pathway $2(OBr^{-} + SO_3^{2-})$ is described by the following reaction equations:

OBr⁻+SO₃²⁻↔[OBr⁻-SO₃²⁻] (1')
[OBr⁻-SO₃²⁻]
$$\xrightarrow{\text{TS}}$$
 [SO₄²⁻-Br⁻] (2')
[OBr⁻-SO₃²⁻] $\xrightarrow{\text{SO}}$ SO₄²⁻+Br⁻ (3')

Applying the steady-state approximation to the pre-reactive complex and assuming that the complex is in equilibrium with the reactant, we obtain the following expressions for the uncatalyzed formation reaction rate $(v_{20Br}^{-} + SO3^{2-}, un)$ of (where k_n is the rate constant for reaction n in the scheme given above):

$$v_{2\text{OBr}^- + \text{SO}_3^2,\text{un}} = \frac{d[\text{SO}_4^{2^-}]}{dt} = k_{2'} [\text{OBr}^- \text{SO}_3^{2^-}]$$
(4')

$$k_{1'}[OBr^{-}][SO_{3}^{2-}] - k_{-1'}[OBr^{-}][SO_{3}^{2-}] - k_{2'}[OBr^{-} - SO_{3}^{2-}] = 0$$
$$[OBr^{-} - SO_{3}^{2-}] = \frac{k_{1'}[OBr^{-}][SO_{3}^{2-}]}{k_{-1'} + k_{2'}} \quad (4'-1)$$
$$v_{2OBr^{-} + SO_{3}^{2-}, un} = \frac{d[SO_{4}^{2-}]}{dt} = \frac{k_{1'} \times k_{2'}}{k_{-1'} + k_{2'}} [OBr^{-}][SO_{3}^{2-}] \quad (4'-2)$$

The pseudo-unimolecular uncatalyzed S(IV) oxidation rates through Pathway 2(OBr⁻⁺SO₃²⁻) can be written as

$$v_{2OBr^{-} + SO_{3}^{2^{-}} - S(IV)} = \frac{k_{1'} \times k_{2'}}{k_{-1'} + k_{2'}} [OBr^{-}] \quad (4'-3)$$

where $k_{1'}/k_{-1'}$ symbolizes the forward/reverse rate coefficients for the reaction 1' and $k_{2'}$ is the unimolecular rate constant for the uncatalyzed reaction 2'.

The detailed catalyzed formation process of sulfate from OBr⁻ and SO_3^{2-} through Pathway 2(OBr⁻ + SO_3^{2-}) is described by the following reaction equations:

$$OBr^{-}+SO_{3}^{2-}\leftrightarrow [OBr^{-}-SO_{3}^{2-}] (1')$$

$$[OBr^{-}-SO_{3}^{2-}]+M\leftrightarrow [SO_{3}^{2-}-OBr^{-}-M] (5')$$

$$[SO_{3}^{2-}-OBr^{-}-M] \xrightarrow{TS} [SO_{4}^{2-}-Br^{-}-M] (6')$$

$$[SO_{4}^{2-}-Br^{-}-M] \rightarrow SO_{4}^{2-}+Br^{-}+M (7')$$

Applying the steady-state approximation to the pre-reactive complex and assuming that the complex is in equilibrium with the reactant, we obtain the following expressions for the catalyzed formation reaction rate $(v_{2OBr}^{-} + SO3^{2-}, cat)$ of sulfate (where k_n is the rate constant for reaction n in the scheme given above):

$$v_{2OBr^{-}+SO_{3}^{2-},cat} = \frac{d[SO_{4}^{2-}]}{dt} = k_{6'}[SO_{3}^{2-}-OBr^{-}-M] \quad (8')$$

$$k_{5'}[OBr^{-}-SO_{3}^{2-}][M] - k_{-5'}[SO_{3}^{2-}-OBr^{-}-M] - k_{6'}[SO_{3}^{2-}-OBr^{-}-M] = 0$$

$$[SO_{3}^{2-}-OBr^{-}-M] = \frac{k_{5'}[OBr^{-}-SO_{3}^{2-}][M]}{k_{-5'}+k_{6'}} \quad (8'-1)$$

$$k_{1'}[OBr^{-}][SO_{3}^{2-}] - k_{-1'}[OBr^{-}-SO_{3}^{2-}] - k_{5'}[OBr^{-}-SO_{3}^{2-}][M] = 0$$

$$[OBr^{-}-SO_{3}^{2-}] = \frac{k_{1'}[OBr^{-}][SO_{3}^{2-}]}{k_{-1'}+k_{5'}[M]} \quad (8'-2)$$

$$v_{2OBr^{-}+SO_{3}^{2-},cat} = \frac{d[SO_{4}^{2-}]}{dt} = \frac{k_{6'} \times k_{5'}}{k_{-5'} + k_{6'}} \times \frac{k_{1'}}{k_{-1'} + k_{5'}[M]} \times [OBr^{-}][SO_{3}^{2-}][M] (8'-3)$$

The pseudo-unimolecular catalyzed S(IV) oxidation rate through Pathway 1(OBr⁻⁺ SO_3^{2-}) can be written as

$$v_{2\text{OBr}^- + \text{SO}_3^{2^-}, \text{ cat-S(IV)}} = \frac{k_{6'} \times k_{5'}}{k_{-5'} + k_{6'}} \times \frac{k_{1'}}{k_{-1'} + k_{5'}[\text{M}]} \times [\text{OBr}^-][\text{M}](8'-4)$$

where $k_{5'}/k_{-5'}$ symbolizes the forward/reverse rate coefficients for the reaction 5' and $k_{6'}$ is the unimolecular rate constant for the catalyzed reaction 6'.

3.3.3 S(IV) oxidation rate, related reaction rate constants and S(IV) lifetimes through Pathway 1(OBr⁻ + SO₃²⁻) and Pathway 2(OBr⁻ + SO₃²⁻)

Table S8. Calculated forward/reverse rate coefficients $(k_1/k_{-1}, k_4/k_{-4}, k_8/k_{-8}, k_{12}/k_{-12}, k_{15}/k_{-15}, k_{19}/k_{-19})$, and the unimolecular rate constants $(k_2, k_5, k_9, k_{13}, k_{16}, k_{20})$ for the sulfate formation between OBr⁻ and SO₃²⁻ through Pathway 1(OBr⁻ + SO₃²⁻).

Catalyst	Rate constants		Rate constants	
Without catalyst	k_1	3.23×10 ⁹ M ⁻¹ s ⁻¹	<i>k</i> ₋₁	4.53×10 ⁹ s ⁻¹
	k_2	1.88×10 ⁻³ s ⁻¹		
	k_4	7.81×10 ⁹ M ⁻¹ s ⁻¹	k_{-4}	5.57×10 ⁹ s ⁻¹
	<i>k</i> 5	8.05×10 ⁻²⁸		
	k_8	7.69×10 ⁹ M ⁻¹ s ⁻¹	<i>k</i> - ₈	1.61×10 ¹¹ s ⁻¹
	k_9	1.03 s ⁻¹		
(H ₂ O-catalyzed)	k_{12}	$8.00 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$	<i>k</i> -12	4.53×10 ⁸ s ⁻¹
	<i>k</i> ₁₃	3.67×10 ² s ⁻¹		
	k_{15}	7.81×10 ⁹ M ⁻¹ s ⁻¹	<i>k</i> -15	1.38×10 ¹¹ s ⁻¹
	k_{16}	2.27×10 ⁻⁸		
	k_{19}	$7.98 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$	<i>k</i> - ₁₉	5.03×10 ⁷ s ⁻¹
	k_{20}	4.70 s ⁻¹		
(HSO ₄ -catalyzed)	k_{12}	3.23×10 ⁹ M ⁻¹ s ⁻¹	<i>k</i> ₋₁₂	4.53×10 ⁹ s ⁻¹
	<i>k</i> ₁₃	3.25×10 ⁹ s ⁻¹		
	k_{15}	$3.23 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$	<i>k</i> -15	1.64×10 ⁹ s ⁻¹
	k_{16}	7.39×10 ⁻⁸		
	k_{19}	$3.25 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$	<i>k</i> -19	2.04×10 ⁻⁴ s ⁻¹
	k_{20}	1.25×10 ⁻⁴ s ⁻¹		

Table S9. Calculated forward/reverse rate coefficients $(k_1 \cdot / k_{-1}, k_5 \cdot / k_{-5})$, and the unimolecular rate constants (k_2, k_6) for the sulfate formation between OBr⁻ and SO₃²⁻

through Pathway $2(OBr^{-} + SO_3^{2^-})$.

Rate constant	Rate constants		Rate constants	
	k_{1} ,	3.23×10 ⁹ M ⁻¹ s ⁻¹	k_{-1} ,	6.75×10 ¹⁰ s ⁻¹
	k_{2} ,	3.32×10 ⁻⁵ s ⁻¹		
(H ₂ O-catalyzed)	k_{5} ,	8.03×10 ⁹ M ⁻¹ s ⁻¹	<i>k</i> -5'	$3.19 \times 10^5 \text{ s}^{-1}$
	k_{6} ,	2.54×10-4		
(HSO ₄ -catalyzed)	k_{5} ,	3.25×10 ⁹ M ⁻¹ s ⁻¹	<i>k</i> -5'	2.87×10 ⁻⁴ s ⁻¹
	k_{6} ,	2.46×10 ² s ⁻¹		

Table S10. Calculated overall rate constant, effective rate constant, S(IV) oxidation rate and the S(IV) lifetimes for Pathway 1(OBr⁻ + SO₃²⁻) and Pathway 2(OBr⁻ + SO₃²⁻) from SO₃²⁻ and OBr⁻ respectively, assuming [OBr⁻] =7.42 × 10⁻⁷ M (corresponding to a Henry's law equilibrium with a gas phase HOBr mixing ratio of 0.31 ppbv at pH=9), and [H₂O] =55.56 M (corresponding to the known bulk concentration of H₂O).

Data constanta	Catalvata	Overall rate	Effective rate	S(IV) oxidation	S(IV)
Kate constants	Catalysis	constant M ⁻² s ⁻¹	constant $^{d}(M^{-1}s^{-1})$	rate (s ⁻¹)	lifetime (s)
D-41 1 a	Without catalyst	1.94×10 ⁻⁴⁰	1.94×10 ⁻⁴⁰	1.44×10 ⁻⁴⁶	6.96×10 ⁴⁵
Pathway 1 $^{\circ}$	H ₂ O-catalyzed	1.36×10 ⁻¹⁹	4.21×10 ⁻¹⁶	3.12×10 ⁻²²	3.20×10^{21}
$(OBF + SO_3^{-})$	HSO ₄ -catalyzed ^c	2.51×10 ⁻⁸	2.51×10 ⁻²⁶	1.86×10 ⁻³²	5.37×10^{31}
D -41	Without catalyst	6.80×10 ⁻¹⁵	6.80×10 ⁻¹⁵	5.05×10 ⁻²¹	1.98×10^{20}
Pathway 1 $^{\circ}$	H ₂ O-catalyzed	4.44×10 ⁻⁸	1.37×10 ⁻⁴	1.02×10 ⁻¹⁰	9.83×10 ⁹
$(OBr + SO_3^2)$	HSO ₄ -catalyzed ^c	1.76×10 ⁷	1.76×10 ⁻¹¹	1.31×10 ⁻¹⁷	7.64×10^{16}
D-4 2	Without catalyst	1.59×10 ⁻⁶	1.59×10 ⁻⁶	1.18×10 ⁻¹²	8.49×10 ¹¹
Pathway 2 $(ODr + SO^{2})$	H ₂ O-catalyzed	4.01×10 ⁻²	2.23	1.65×10 ⁻⁶	6.04×10 ⁵
$(OBr + SO_{3^2})$	HSO ₄ -catalyzed ^c	1.56×10 ⁸	1.56×10-1	1.15×10 ⁻⁷	8.66×10 ⁶

^a The second step of Pathway 1 (OBr⁻ + SO_3^{2-}) leading to sulfate formation through the hydrolysis reaction.

^b The second step of Pathway 1 ($OBr^{-} + SO_3^{2-}$) leading to sulfate formation through the reaction of $BrSO_3^{-}$ intermediate with OH^{-} .

^c Assuming a general concentration of H^+ act as the possible higher limit for the concentration of HSO_4^- in cloud water.

^d Effective rate constant = Overall rate constant \times [M], where [M] is the concentration of catalyst M.

Section 4. Cartesian coordinates of the structures.

4.1 Cartesian coordinates of the structures involving in the reaction of HOBr with HOSO₂-.

atom	Х	Y	Z
0	0.021200	1.437606	0.000000
Н	-0.911587	1.678685	0.000000
Br	0.021200	-0.376558	0.000000

Table S11. Coordinates of HOBr. Units are in angstrom.

Table S12. Coordinates of HOSO₂⁻. Units are in angstrom.

atom	Х	Y	Ζ
S	0.174133	0.000070	-0.381367
0	-1.480647	-0.001124	0.046825
Н	-1.462594	-0.000264	1.013624
0	0.658589	-1.218452	0.294668
0	0.656617	1.219468	0.294537

Table S13. Coordinates of BrSO₃⁻. Units are in angstrom.

atom	Х	Y	Ζ
S	-1.018881	-0.000009	0.000016
Ο	-1.298949	-1.256781	0.633168
0	-1.298964	1.176750	0.771791
Ο	-1.299024	0.080039	-1.404952
Br	1.356503	0.000003	-0.000009

Table S14. Coordinates of BrSO₃H. Units are in angstrom.

atom	Х	Y	Ζ
S	-0.880751	0.120799	0.069210
0	-1.289144	-1.073702	-0.866719
Н	-1.289927	-1.899639	-0.361576
0	-1.269048	-0.181821	1.397289
0	-1.259093	1.303032	-0.598161
Br	1.312006	-0.011806	-0.005859

Table S15. Coordinates of cis-H₂SO₄. Units are in angstrom.

atom	Х	Y	Ζ
S	0.000000	0.091216	0.120238
0	-0.000020	1.494832	0.195960

0	0.000013	-0.758497	1.259994
О	-1.223808	-0.312199	-0.783942
Н	-1.556128	-1.177623	-0.514162
О	1.223810	-0.312168	-0.783949
Н	1.556168	-1.177575	-0.514159

Table S16. Coordinates of trans-H₂SO₄. Units are in angstrom.

atom	Х	Y	Ζ
S	-0.000002	0.000001	-0.153840
0	0.641015	-1.068244	-0.819725
0	-0.641020	1.068270	-0.819690
О	1.029516	0.662937	0.836058
О	-1.029509	-0.662963	0.836045
Н	1.691785	0.010654	1.099951
Н	-1.691765	-0.010681	1.099974

Table S17. Coordinates of SO₄²⁻. Units are in angstrom.

Х	Y	Ζ
-0.000002	0.000017	-0.000050
0.374677	0.239450	1.421658
1.227987	-0.274813	-0.797412
-0.685196	1.206218	-0.542828
-0.917463	-1.170888	-0.081318
	X -0.000002 0.374677 1.227987 -0.685196 -0.917463	XY-0.0000020.0000170.3746770.2394501.227987-0.274813-0.6851961.206218-0.917463-1.170888

Table S18. Coordinates of H_2O . Units are in angstrom.

atom	Х	Y	Z
Н	-0.000000	0.000000	0.116661
О	0.000000	0.760848	-0.466644
0	-0.000000	-0.760848	-0.466644

atom	Х	Y	Ζ
0	-0.000000	0.000000	0.106625
Н	0.000000	0.000000	-0.853002

Table S20. Coordinates of HSO₄⁻. Units are in angstrom.

atom	Х	Y	Z
S	-0.142029	-0.029869	-0.000006
О	-0.900566	1.193776	-0.000107
0	-0.232877	-0.817287	-1.211881
0	-0.233038	-0.817186	1.211922

0	1.405583	0.532161	0.000068
Н	1.959652	-0.253800	0.000082

atom	Х	Y	Z
S	1.427633	-0.133204	0.040985
Ο	1.984175	1.296588	-0.572656
Н	1.762363	2.010589	0.042141
Ο	2.052072	-0.212097	1.369052
Ο	2.014100	-1.067179	-0.926653
Ο	-3.151990	0.106632	0.025565
Н	-3.440872	-0.543055	-0.625659
Br	-1.267156	-0.009366	0.021866

Table S21. Coordinates of reactant complex (Rc1). Units are in angstrom.

Table S22. Coordinates of transition state (Pc2). Units are in angstrom.

atom	Х	Y	Ζ
0	-1.144381	-1.843517	0.007509
Н	-1.347257	-1.861750	0.947528
Br	1.441060	-0.591378	-0.024336
S	3.420095	0.327536	-0.019076
0	3.107250	1.842213	0.156205
Н	2.966684	2.090686	1.088336
0	4.123158	-0.156613	1.120129
0	3.970510	0.189525	-1.321330
S	-3.870488	0.339355	-0.000272
0	-4.138490	1.790947	-0.057268
0	-5.113813	-0.415618	-0.262991
0	-3.334093	-0.024582	1.330302
0	-2.856848	-0.012079	-1.037890
Н	-1.756586	-1.163181	-0.351873

Table S23. Coordinates of product complex (R_{c3}). Units are in angstrom.

atom	Х	Y	Ζ
S	0.342745	0.690269	0.003442
Ο	0.941680	0.406782	1.282483
Ο	1.088154	0.183042	-1.128057
О	-0.168271	2.024963	-0.160272
Ο	3.413365	-1.184098	-0.062709
Н	2.642865	-0.745384	-0.450686
Н	3.355970	-0.974361	0.874341
Br	-1.533776	-0.593430	0.001992

Table S24. Coordinates of reactant complex (TS₃). Units are in angstrom.

Х	Y	Ζ
0.716046	-0.160474	0.024768
0.828803	-0.877085	-1.212304
0.834227	1.389566	-0.020218
0.798791	-0.790021	1.307656
2.762989	0.191429	0.053070
1.890476	1.354598	-0.027653
3.085191	-0.041956	-0.822830
-1.663740	0.055538	-0.016327
	X 0.716046 0.828803 0.834227 0.798791 2.762989 1.890476 3.085191 -1.663740	XY0.716046-0.1604740.828803-0.8770850.8342271.3895660.798791-0.7900212.7629890.1914291.8904761.3545983.085191-0.041956-1.6637400.055538

Table S25. Coordinates of transition state (P_{c3}). Units are in angstrom.

atom	Х	Y	Ζ
S	1.566238	0.110840	0.041666
О	1.435473	0.195213	1.462515
0	0.529932	-0.850525	-0.536860
0	1.611906	1.328763	-0.698770
0	2.891271	-0.637893	-0.313916
Н	-0.466335	-0.543199	-0.330771
Н	3.040588	-1.409501	0.258348
Br	-2.268078	-0.003006	0.002915

Table S26. Coordinates of product complex (R_{c4}). Units are in angstrom.

atom	Х	Y	Ζ
S	-0.007458	-0.439482	0.316425
0	0.581178	0.674236	1.025632
0	0.615932	-0.738344	-0.951016
0	-0.312041	-1.582439	1.134257
0	3.133176	1.680571	0.232594
Н	3.061303	2.250234	-0.539509
Н	2.220600	1.434724	0.449935
0	3.532374	-0.981495	-0.673097
Н	2.599736	-1.130289	-0.872705
Н	3.545202	-0.057229	-0.374920
Br	-2.048927	0.346115	-0.282073

atom	Х	Y	Z
S	0.549142	0.449643	-0.010165
0	0.723513	-0.368873	-1.157271
0	0.676697	-0.116827	1.286406
0	0.163766	1.807765	-0.153016
0	3.575070	-1.535051	-0.013867

Н	3.332726	-1.898494	0.845035
Н	2.970702	-1.956567	-0.635498
0	2.677961	0.990897	-0.088258
Н	2.917195	1.471972	0.713745
Н	3.114746	0.107844	-0.019547
Br	-2.390220	-0.318353	0.007627

Table S28. Coordinates of transition state (P_{c4}). Units are in angstrom.

atom	Х	Y	Z
S	-1.615124	-0.594010	-0.012610
О	-1.237412	0.699913	-0.521949
0	-1.288087	-0.833345	1.371653
О	-1.332044	-1.702429	-0.889505
0	-4.285826	1.834307	0.062815
Н	-3.659131	2.469530	0.449969
Н	-4.489010	2.119938	-0.843837
Ο	-3.255946	-0.460310	-0.031933
Н	-3.675133	-1.138295	0.519892
Н	-3.852918	0.894894	0.039745
Br	3.791791	0.252943	0.003067

Table S29. Coordinates of product complex (R_{c5}). Units are in angstrom.

Х	Y	Ζ
-1.663798	-0.064638	0.000002
-2.830060	1.106089	-0.000001
-3.702334	0.678324	-0.000009
-1.969735	-0.850822	-1.214745
-1.969751	-0.850827	1.214738
1.230612	1.376371	0.000001
0.291344	1.101905	0.000006
2.124092	-0.199786	0.000001
	X -1.663798 -2.830060 -3.702334 -1.969735 -1.969751 1.230612 0.291344 2.124092	XY-1.663798-0.064638-2.8300601.106089-3.7023340.678324-1.969735-0.850822-1.969751-0.8508271.2306121.3763710.2913441.1019052.124092-0.199786

Table S30. Coordinates of reactant complex (TS₅). Units are in angstrom.

atom	Х	Y	Ζ
S	1.858352	-0.165624	0.008480
О	1.791103	1.453275	-0.086653
Н	2.694794	1.811313	-0.068148
О	2.584834	-0.441692	1.252171
О	2.593166	-0.589871	-1.187213
О	-0.311657	-0.186245	0.008596
Н	-0.342084	-1.155452	0.010163
Br	-2.438454	0.003154	0.000774

atom	Х	Y	Z
S	-1.646423	-0.066252	0.071228
0	-1.474783	1.280283	-0.719095
Н	-1.870957	2.026630	-0.240316
0	-2.892207	-0.663925	-0.287792
0	-1.416258	0.195703	1.457212
0	-0.535877	-0.889315	-0.553785
Н	0.446609	-0.544225	-0.324029
Br	2.237717	0.005590	0.007211

Table S31. Coordinates of transition state (Pc5). Units are in angstrom.

Table S32. Coordinates of product complex (R_{c6}). Units are in angstrom.

atom	Х	Y	Ζ
S	1.689482	-0.562651	-0.043972
0	2.509761	0.820847	-0.413508
Н	1.919010	1.569443	-0.179470
0	1.691389	-0.578780	1.435606
0	2.618258	-1.568023	-0.596455
0	-1.127050	0.566290	-0.976709
Н	-0.270441	0.094833	-0.874743
0	0.553102	2.671870	0.214998
Н	0.441513	2.710033	1.170763
Н	-0.228160	2.205248	-0.112441
Br	-2.253066	-0.367850	0.096799

Table S33. Coordinates of reactant complex (TS₆). Units are in angstrom.

atom	Х	Y	Z
S	1.922238	-0.395002	0.056415
Ο	1.898289	0.923038	-0.870401
Н	1.156423	1.510337	-0.566685
Ο	2.373114	0.061716	1.378490
Ο	2.909066	-1.230674	-0.637011
0	-0.320428	-0.547812	-0.001948
Н	-0.303256	-1.246435	0.670306
0	-0.186343	2.383894	-0.058873
Н	-0.002392	2.865784	0.754916
Н	-0.793121	1.675779	0.198362
Br	-2.405801	-0.320192	-0.012617

Table S34. Coordinates of transition state (P_{c6}). Units are in angstrom.

atom	X	Y	Z

S	1.728078	-0.216876	0.065513
0	1.430815	0.949666	-0.879776
Н	0.648574	1.572122	-0.528750
0	1.471728	0.189932	1.415420
Ο	3.022655	-0.726752	-0.252612
Ο	0.724141	-1.323632	-0.337102
Н	-0.241275	-1.031739	-0.189258
Ο	-0.460709	2.343385	-0.096662
Н	-0.277743	2.756432	0.756309
Н	-1.143845	1.656424	0.064091
Br	-2.175543	-0.369829	0.001579

4.2 Cartesian coordinates of the structures involving in the reaction of HOBr with SO₃²⁻.

atom	Х	Y	Ζ
S	-0.000055	-0.000023	0.332061
0	-0.171848	1.409296	-0.221366
0	-1.134796	-0.853445	-0.221340
0	1.306754	-0.555805	-0.221415

Table S35. Coordinates of SO₃²⁻. Units are in angstrom.

Table S36. Coordinates of monomer (M7). Units are in angstrom.

atom	Х	Y	Ζ
S	-1.05978900	0.00994400	-0.02952400
0	-1.74023800	1.37383200	0.08497500
0	-1.44002600	-0.74724400	1.24208400
0	-1.77860300	-0.71314900	-1.16886200
0	3.28879445	0.93178316	-1.76698883
Н	3.81448122	1.05680239	-0.96306569
Br	1.60237850	0.67795094	-1.19116728

Table S37. Coordinates of product complex (Pc7). Units are in angstrom.

atom	Х	Y	Ζ
S	-1.517619	-0.063942	0.004340
0	-1.798264	-0.498979	1.348972
0	-1.763046	-1.047084	-1.019481
0	-1.962285	1.269939	-0.310948
0	4.757766	-0.149211	0.034197
Н	3.866296	-0.399166	-0.218029
Br	0.758350	0.137855	-0.007809

Atom	X	Y	Z
S	0.478604	-0.144418	0.000202
0	0.960060	1.211467	-0.095560
0	0.730443	-0.792814	1.261157
0	0.712723	-0.957736	-1.165307
0	4.076786	0.228760	0.000537
Н	3.194267	0.605716	-0.005628
Br	-1.791200	0.119645	-0.000121

Table S38. Coordinates of reactant complex (Rc8). Units are in angstrom.

Table S39. Coordinates of transition state (TS₈). Units are in angstrom.

Atom	Х	Y	Ζ
S	-0.805044	0.020026	0.001853
0	-0.908701	-0.770179	-1.185880
0	-0.904517	-0.617157	1.278226
0	-0.889124	1.444709	-0.086122
0	-3.236596	0.066687	-0.004440
Н	-3.354624	-0.886284	-0.000933
Br	1.821338	-0.012189	-0.001228

Table S40. Coordinates of product complex (Pc8). Units are in angstrom.

Atom	Х	Y	Ζ
S	2.214578	-0.003426	0.002085
0	1.937760	-0.718536	1.232736
0	1.919999	-0.781246	-1.185951
0	1.701369	1.347694	-0.028589
0	3.800961	0.241372	-0.017181
Н	4.266137	-0.607657	-0.025444
Br	-3.273717	-0.001480	-0.000458

Table S41. Coordinates of product complex (R_{c9}). Units are in angstrom.

Atom	Х	Y	Ζ	
S	0.099989	0.193893	-0.122658	
О	0.178015	1.484651	-0.756089	
О	0.576831	0.149098	1.235996	
О	0.509025	-0.916889	-0.948145	
О	3.565197	1.050631	0.152463	
Н	2.708483	1.355295	0.461188	
О	3.298822	-1.455676	0.067919	
Н	3.399915	-0.419514	0.104905	
Н	2.393865	-1.584610	-0.234120	

Br

-0.141371

-2.146435

Atom	Х	Y	Z
S	-0.416334	0.372256	0.013357
Ο	-0.141088	1.767413	-0.128730
0	-0.708500	-0.408842	-1.149640
0	-0.630845	-0.186859	1.310827
Ο	-2.712679	0.948934	0.084185
Н	-2.823758	1.306087	-0.800649
0	-3.356177	-1.496017	0.014534
Н	-3.094648	-0.496893	0.022570
Н	-2.547212	-1.949180	-0.237139
Br	2.157751	-0.280375	-0.007083

Table S42. Coordinates of product complex (TS₉). Units are in angstrom.

Table S43. Coordinates of product complex (Pc9). Units are in angstrom.

Atom	Х	Y	Ζ
S	1.803550	-0.621420	0.029320
Ο	1.183605	-1.817192	-0.498729
Ο	1.519515	0.562813	-0.770030
Ο	1.627225	-0.423605	1.448062
Ο	3.386406	-0.844040	-0.087539
Н	3.632852	-1.003432	-1.010836
Ο	3.358252	2.593792	-0.006868
Н	4.139951	2.093188	0.244675
Н	2.715140	1.920713	-0.281804
Br	-3.655565	0.181660	-0.002866

Table S44. Coordinates of reactant complex (Rc10). Units are in angstrom.

Atom	Х	Y	Ζ
S	-1.762919	0.004596	-0.006057
0	-2.791349	1.056405	-0.368336
0	-1.953122	-1.149073	-0.967020
0	-2.115418	-0.505624	1.374949
0	1.014734	1.244662	-0.019949
Н	0.097153	0.820882	-0.026365
Br	2.139165	-0.173297	-0.000968

Table S45. Coordinates of reactant complex (TS_{10}) . Units are in angstrom.

Atom	Х	Y	Z
S	1.978718	0.024790	-0.008049
0	2.399176	-1.033901	-0.991108

0	2.745377	1.285385	-0.320605
Ο	2.374501	-0.430605	1.370218
Ο	-0.469252	-0.024219	-0.007909
Н	-0.307053	0.909569	-0.196009
Br	-2.507167	0.009157	-0.002285

Table S46. Coordinates of reactant complex (P_{c10}). Units are in angstrom.

Atom	Х	Y	Ζ
S	-1.754022	-0.059252	-0.000000
0	-2.971243	0.732127	-0.000063
0	-1.578224	-0.846523	-1.210208
0	-1.578296	-0.846432	1.210276
0	-0.616661	1.038607	-0.000005
Н	0.299226	0.625160	-0.000007
Br	2.334872	-0.008553	0.000000

Table S47. Coordinates of product complex (Rc11). Units are in angstrom.

Atom	Х	Y	Ζ
S	-2.634408	-0.347818	0.028644
0	-2.403512	1.183851	0.017230
0	-3.512993	-0.615614	-1.180143
Ο	-3.495360	-0.599065	1.253707
0	1.308934	-0.597938	-0.311710
Н	0.831738	0.285631	-0.235772
Br	3.030841	-0.192045	0.063369
Ο	0.081799	1.674644	-0.155736
Н	-0.918114	1.475923	-0.066061
Н	0.326529	2.158114	0.638836

Table S48. Coordinates of product complex (TS_{11}). Units are in angstrom.

Atom	Х	Y	Ζ
S	-1.932451	-0.343078	0.006494
Ο	-2.497382	1.063223	-0.129999
0	-2.429340	-1.148983	-1.156352
Ο	-2.481078	-0.935078	1.270459
Ο	0.480756	-0.347346	0.012370
Н	0.346078	0.619160	-0.026424
Br	2.542389	-0.249425	0.001074
0	-0.224743	2.462798	-0.099816
Н	-1.124119	2.055332	-0.080650
Н	-0.072078	2.787701	0.792293

Table S49. Coordinates of product complex (Pc11). Units are in angstrom.

Atom	Х	Y	Ζ
S	1.818543	-0.144016	0.025328
0	1.598060	0.941193	-0.925433
0	1.566247	0.266097	1.394594
Ο	3.085081	-0.819185	-0.165699
Ο	0.758178	-1.266085	-0.318662
Н	-0.175847	-0.933869	-0.194309
Br	-2.259173	-0.384878	0.002879
0	-0.614029	2.490254	0.005977
Н	0.214372	2.086389	-0.296635
Н	-1.212452	1.724289	0.058735

4.3 Cartesian coordinates of the structures involving in the reaction of OBr⁻ with SO₃²⁻.

TT 1 1	050	C 1' /	COD	TT '4	•	
Table	550	Coordinates	of UBr-	Units ar	e 1n	angstrom
14010	550.	coordinates	01 0 D1 .	Omes ai	• 111	angouonn

atom	Х	Y	Ζ
0	0.000000	0.000000	-1.461728
Br	0.000000	0.000000	0.334109

Table S51. Coordinates of reactant complex (Rc12). Units are in angstrom.

Atom	Х	Y	Z
S	2.853608	-0.024325	-0.027034
Ο	3.340422	-0.209897	1.409439
О	3.741249	-0.926377	-0.883550
Ο	3.238968	1.405373	-0.407701
О	-4.355405	0.494444	0.058548
Br	-2.667988	-0.163404	-0.028039

Table S52. Coordinates of transition state (TS₁₂). Units are in angstrom.

Atom	X	Y	Ζ
S	-1.297174	-0.022195	-0.000003
0	-1.686205	-0.759764	1.214203
Ο	-1.860775	1.338720	-0.000603
0	-1.686046	-0.760764	-1.213654
0	3.429158	-0.147585	-0.000029
Br	1.005306	0.085436	0.000020

Table S53. Coordinates of reactant complex (R_{c13}). Units are in angstrom.

Atom	Х	Y	Z
	2.225526	0.168093	-0.001913

2.766911	1.553194	-0.361704
2.838207	-0.163935	1.360741
2.883470	-0.795551	-0.991087
-2.941489	-0.811399	0.002889
-4.032427	1.431459	-0.001775
-3.549279	0.500573	0.000055
-3.324858	2.080082	-0.000989
-1.167190	-0.428008	-0.001170

Table S54. Coordinates of transition state (TS_{13}). Units are in angstrom.

Atom	Х	Y	Z
S	2.200092	0.160574	0.000273
Ο	2.638973	1.558353	-0.384433
Ο	2.758057	-0.146772	1.374266
Ο	2.812254	-0.812874	-0.985825
0	-2.802225	-0.849052	-0.001615
0	-4.593387	1.073930	0.008946
Н	-3.425683	-0.027806	0.005266
Н	-4.026542	1.846462	-0.057585
Br	-0.978818	-0.313614	-0.001222

Table S55. Coordinates of product complex (Pc13). Units are in angstrom.

Atom	Х	Y	Ζ
S	1.680182	0.294937	0.002518
Ο	1.247056	1.664175	-0.109322
Ο	2.262447	-0.060844	1.271474
Ο	2.366513	-0.226120	-1.152215
Ο	-4.702118	-0.480589	0.008649
Ο	-2.525596	2.110024	-0.006312
Н	-4.011289	0.188924	0.006819
Н	-1.921365	1.363421	-0.004143
Br	-0.289619	-0.866415	-0.004033

Table S56. Coordinates of reactant complex (R_{c14}) . Units are in angstrom.

Atom	Х	Y	Ζ
S	-2.700801	-0.009142	-0.007471
Ο	-3.426318	-1.004225	-0.911704
0	-3.267196	-0.247406	1.391073
Ο	-3.209200	1.369546	-0.428942
0	1.386490	-0.230448	-0.065239
Br	3.181217	0.029901	0.006801

Table S57. Coordinates of transition state (TS₁₄). Units are in angstrom.

Atom	Х	Y	Ζ
S	-1.965569	-0.001749	0.004910
0	-2.581893	-0.972745	1.001481
0	-2.540862	1.368806	0.331517
0	-2.518632	-0.382531	-1.360782
0	0.401586	-0.010089	0.011996
Br	2.553358	0.000013	0.001364

Table S58. Coordinates of product complex (Pc14). Units are in angstrom.

Atom	Х	Y	Ζ
S	-2.737586	-0.000020	-0.000480
О	-3.236137	-0.991822	-0.982126
0	-3.269488	-0.328038	1.344195
О	-3.189840	1.356420	-0.392233
0	-1.255369	-0.036244	0.030762
Br	3.754516	-0.000063	0.000083

Table S59. Coordinates of reactant complex (Rc15). Units are in angstrom.

atom	X	Y	Z
	2 (702.41	0.0000(0	0.054776
8	-2.6/0341	-0.299962	0.054//6
0	-3.459629	-0.995073	-1.048382
0	-3.581805	-0.288517	1.277370
0	-2.561983	1.167557	-0.385797
0	1.318766	-0.535554	0.086303
0	0.128712	1.765063	-0.059203
Н	0.621165	0.885025	-0.006872
Н	-0.814677	1.531032	-0.167580
Br	3.090471	-0.186413	0.009592

Table S60. Coordinates of transition state (TS_{15}). Units are in angstrom.

atom	Х	Y	Z
S	-1.923184	-0.260883	0.005550
Ο	-2.393834	-1.179550	-1.103496
Ο	-2.493103	-0.806138	1.299634
Ο	-2.592694	1.088458	-0.232432
Ο	0.402517	-0.244062	0.021135
Ο	-0.006298	2.291460	0.009184
Н	0.271889	1.304286	0.016765
Н	-0.967399	2.188663	-0.060632
Br	2.518107	-0.243433	0.000082

Table S61. Coordinates of reactant complex (Pc15). Units are in angstrom.

atom	Х	Y	Ζ
S	-2.469126	-0.171390	-0.000000
0	-3.276439	-0.441475	-1.209997
0	-3.276486	-0.441413	1.209979
0	-2.049808	1.256881	-0.000028
0	-1.261647	-1.027580	0.000046
0	0.647233	1.859217	0.000001
Н	1.306647	1.141179	0.000006
Н	-0.239866	1.454381	-0.000010
Br	3.205040	-0.271382	-0.000000

6 Note and References

1 J. Liu, A. Ning, L. Liu, H. Wang, T. Kurtén and X. Zhang, Sci. Total Environ., 2021, 787, 147551.

2 W. F. Mccoy, E. R. B. III and R. W. Johnson, Hypohalous Acid and haloamine flashoff in industrial evaporative cooling systems, Cooling Tower Institute Annual Meeting, 1990.