Noble Metal (Ag, Au, Pd and Pt) Doped TaS₂ Monolayer for Gas Sensing: A First-Principle Investigation

Jia Shi, Wenjing Quan, Xinwei Chen, Xiyu Chen, Yongwei Zhang, Wen Lv, Jianhua Yang*, Min Zeng*, Hao Wei, Nantao Hu, Yanjie Su, Zhihua Zhou, Zhi Yang*

Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

*Corresponding authors. E-mail address: yangjh08@sjtu.edu.cn (J. H. Yang), minzeng@sjtu.edu.cn (M. Zeng), zhiyang@sjtu.edu.cn (Z. Yang)

Fig. S1 Schematic of the primitive cell of the bulk TaS_2 (a, b), the band structure (c), and the spin-polarized projected density of states (d).

Fig. S2 Possible adsorption configuration of NH_3 (a, b, c), NO_2 (d, e, f), and NO (g, h,

i) adsorbed on the TaS_2 monolayer.

Fig. S3 Possible adsorption configurations of CO_2 , CO, N_2 and O_2 adsorbed on TaS_2 monolayer.

Fig. S4 The plots of spin-polarized projected density of states for the TaS_2 monolayer exposed to NH_3 (a), NO_2 (b) and NO (c), respectively.

Fig. S5 A schematic diagram of a TaS_2 monolayer with a S vacancy (a), effective energy band (b), and spin-polarized projected density of states (c), respectively.

Fig. S6 Top view (a, b, c and d) and side view (e, f, g and h) of TaS₂ monolayer doped with noble metal atoms (Ag, Au, Pd and Pt, NM-doped TaS₂), respectively.

Fig. S7 The plots of spin-polarized projected density of states of NM-doped TaS_2 monolayer.

Fig. S8 Electronic band structures of intrinsic and NM-doped TaS₂. Black lines: spin up, red lines: spin down and the Fermi level is set to zero.

Fig. S9 The adsorption configuration (a, b, c and d) and the isosurface charge density plots (e, f, g and h) of NO adsorbed on NM-doped TaS_2 monolayer using isovalue of 0.02 e/Å³, respectively. Cyan: charge depletion. Yellow: charge accumulation.

Fig. S10 Adsorption configurations of CO_2 , CO, N_2 and O_2 adsorbed on NM-doped TaS₂ monolayer.

Gas molecule	Sites	E _{ads} (eV)	$Q_{T}(e)$	h (Å)
NH ₃	T_{Ta}	-0.2162	-0.0290	2.8849
	T_S	-0.2141	-0.0256	2.9460
	Н	-0.2032	-0.0446	3.2459
NO ₂	T_{Ta}	-0.3880	0.0430	2.4368
	T_S	-03904	0.0428	2.4329
	Н	-0.3902	0.0439	2.4288
NO	T_{Ta}	-0.4902	-0.1741	1.9174
	T_S	-0.4409	-0.1707	2.3122
	Н	-0.4472	-0.1709	2.3461

Table S1. The adsorption energy (E_{ads}) , charge transfer (Q_T) and equilibrium height (h)

of the system between gas molecule and TaS_2 monolayer.

Table S2. The recovery time of the intrinsic and NM-doped TaS_2 monolayer exposed

System	Recovery time 300 K	(s) 400 K	500 K	
NH ₃ -TaS ₂	4.26×10 ⁻⁹	5.27×10 ⁻¹⁰	1.51×10 ⁻¹⁰	
NH ₃ -Ag	2.49×10 ⁶	62.7	1.09×10 ⁻¹	
NH ₃ -Au	3.83×10 ⁵	15.4	3.55×10-2	
NH ₃ -Pd	6.67×10 ³	7.38×10 ⁻¹	3.12×10-3	
NH ₃ -Pt	8.39×10 ³	8.77×10 ⁻¹	3.58×10 ⁻³	
NO-TaS ₂	1.71×10 ⁻⁴	1.49×10 ⁻⁶	8.69×10 ⁻⁸	
NO-Ag	1.14×10 ⁻²	3.50×10 ⁻⁵	1.08×10 ⁻⁶	
NO-Au	1.07×10 ⁻¹	1.87×10-4	4.14×10 ⁻⁶	
NO-Pd	9.82×10 ⁻¹	9.87×10 ⁻⁴	1.57×10 ⁻⁵	
NO-Pt	2.17	1.79×10 ⁻³	2.52×10 ⁻⁵	

to NH_3 , NO_2 and NO gas molecules.

NO ₂ -Pt	8.62×10 ⁶	1.59×10 ²	2.30×10 ⁻¹
NO ₂ -Pd	2.62×10 ⁵	11.6	2.82×10 ⁻²
NO ₂ -Au	9.16×10 ²	1.67×10 ⁻¹	9.49×10 ⁻⁴
NO ₂ -Ag	44.3	1.72×10 ⁻²	1.54×10 ⁻⁴
NO ₂ -TaS ₂	3.58×10 ⁻⁶	8.22×10 ⁻⁸	8.55×10 ⁻⁹