Methane Activation on Single-Atom Ir-doped Metal Nanoparticles from First-principles

Yugang Ren¹, Xiaojing Liu¹, Zhaojun Zhang², Xiangjian Shen^{*1}

Table of content

SI-1: Transition state information on the pure metal surface
SI-2: Information on the transition state of the alloy surface
SI-3: Transition state Bader-charge analysis
SI-4: Surface energy of each alloy crystal plane (J/m ²)
SI-5: Proportions of (100), (110) and (111) surfaces of pure metal nanoparticles under two
different given pressures at T=500 K 4
SI-6: Proportions of (100), (110) and (111) surfaces of alloy metal nanoparticles under two
different given pressures at T=500 K 4
SI-7: Proportions of (100), (110) and (111) surfaces of alloy metal nanoparticles under different
temperatures at P=1bar 5
SI-8: The pure metal activity (S ⁻¹)
SI-9: The alloy activity (S ⁻¹)
SI-10: The dissociation barrier of methane and adsorption energy of methyl on Ni(111) surface
with and without the van der Waals correction
SI-11: Wulff structures of pure-metals at different pressures
SI-12: Wulff structures of pure-metals at different temperatures7
SI-13: Transition states of methane activation on different pure metal surfaces including (100),
(110) and (111) surfaces
SI-14: Transition states of methane activation on different alloy metal surfaces including (100),
(110) and (111) surfaces
SI-15: Wulff structures of Ir@M alloy at different pressures
SI-16: Wulff structures of Ir@M alloy at different temperatures

			rigid				relaxed			
		d_{MC}	R _{CH}	θ	E_b	d_{MC}	R _{CH}	θ	E_b	
		(Å)	(Å)	(°)	(eV)	(Å)	(Å)	(°)	(eV)	
	100	2.093	1.613	132	0.851	2.067	1.611	132	0.791	
Со	110	2.099	1.662	125	0.999	2.058	1.681	128	0.894	
	111	2.147	1.614	128	1.082	2.111	1.732	125	0.993	
	100	2.223	1.57	130	0.674	2.205	1.556	130	0.596	
Rh	110	2.205	1.625	127	0.716	2.203	1.598	131	0.653	
	111	2.147	1.614	128	1.082	2.111	1.732	125	0.993	
	100	2.283	1.452	133	0.555	2.283	1.441	133	0.463	
Ir	110	2.263	1.568	127	0.477	2.25	1.525	127	0.374	
	111	2.297	1.581	129	0.892	2.259	1.49	132	0.716	
	100	2.065	1.629	126	0.934	2.025	1.643	127	0.807	
Ni	110	2.036	1.642	126	0.761	2.022	1.658	129	0.717	
	111	2.108	1.696	127	1.043	2.057	1.547	136	0.886	
	100	2.174	1.634	132	0.740	2.157	1.608	132	0.644	
Pd	110	2.170	1.587	134	0.722	2.157	1.638	132	0.692	
	111	2.204	1.687	131	0.873	2.180	1.657	130	0.819	
	100	2.267	1.449	135	0.604	2.231	1.414	135	0.447	
Pt	110	2.240	1.477	132	0.383	2.234	1.459	132	0.346	
	111	2.257	1.532	131	0.845	2.224	1.524	129	0.734	

Table S1: Transition state information on the pure metal surface.

 Table S2: Information on the transition state of the alloy surface.

			relaxed			rigid				
		<i>E</i> ^b (eV)	<i>R_{CH}</i> (Å)	<i>d_{MC}</i> (Å)	θ (°)	<i>E</i> ^{<i>b</i>} (eV)	<i>R_{CH}</i> (Å)	<i>d_{MC}</i> (Å)	θ (°)	d _{Ir-Ir'} (Å)
	100	0.506	1.420	2.277	132	0.613	1.43	2.30	132	0.131
Ir@Rh	110	0.437	1.474	2.250	119	0.541	1.52	2.26	124	0.108
	111	0.697	1.483	2.621	129	0.833	1.52	2.30	130	0.200
	100	0.488	1.447	2.268	133	0.569	1.45	2.30	133	0.130
Ir@Ni	110	0.481	1.482	2.228	131	0.578	1.52	2.24	136	0.123
	111	0.644	1.507	2.258	128	0.811	1.52	2.32	133	0.198
	100	0.331	1.360	2.275	133	0.529	1.47	2.32	132	0.192
Ir@Pd	110	0.100	1.450	2.229	122	0.240	1.49	2.24	125	0.098
	111	0.290	1.417	2.263	128	0.539	1.51	2.28	131	0.234

	100	0.237	1.392	2.259	133	0.401	1.40	2.30	133	0.185
Ir@Pt	110	0.014	1.430	2.233	119	0.100	1.51	2.24	121	0.089
	111	0.382	1.485	2.229	128	0.633	1.52	2.28	131	0.271
	100	0.433	1.458	2.26	131	0.539	1.47	2.30	133	0.174
Ir@Cu	110	0.335	1.461	2.212	137	0.402	1.50	2.23	133	0.133
	111	0.471	1.490	2.279	129	0.626	1.52	2.32	131	0.214
	100	0.302	1.420	2.525	130	0.502	1.44	2.29	131	0.164
Ir@Ag	110	0.114	1.401	2.222	134	0.176	1.43	2.24	133	0.110
	111	0.301	1.439	2.273	129	0.498	1.49	2.31	131	0.240

 Table S3:
 Transition state Bader-charge analysis(e).

			relaxed	
		CH ₃	Ir	Н
	100	-0.0554	0.0195	0.0602
Ir@Rh	110	-0.0504	-0.0297	0.0712
	111	-0.0255	-0.101	0.0757
	100	-0.0568	-0.247	0.0520
Ir@Ni	110	-0.0578	-0.219	0.0500
	111	-0.0568	-0.284	0.0580
	100	-0.0319	0.0607	0.0730
Ir@Pd	110	-0.0166	0.0462	0.0807
	111	-0.0185	0.00144	0.0885
	100	-0.0115	0.165	0.0889
Ir@Pt	110	-0.0135	0.182	0.0797
	111	0.0258	0.135	0.107
	100	-0.0345	-0.382	0.0272
Ir@Cu	110	-0.0653	-0.313	0.0418
	111	-0.0551	-0.447	0.0509
	100	-0.0340	-0.230	0.0398
Ir@Ag	110	-0.0363	-0.216	0.0427
	111	-0.0722	-0.249	0.0548

Table S4: Surface energy of alloy crystal plane (J/m^2) .

		E clean	300K	500K	700K
		EMercan	E _{surface}	E _{surface}	E _{surface}
	100	2.434	2.463	2.534	2.61
Ir@Rh	110	2.457	2.472	2.522	2.576
	111	2.059	2.115	2.196	2.285
L. ON:	100	1.934	1.966	2.047	2.136
Ir@Ni	110	2.090	2.110	2.168	2.231

	111	1.537	1.598	1.692	1.795
	100	1.682	1.694	1.761	1.834
Ir@Pd	110	1.702	1.701	1.749	1.800
	111	1.497	1.521	1.598	1.682
	100	1.937	1.932	1.998	2.070
Ir@Pt	110	1.979	1.958	2.005	2.055
	111	1.588	1.603	1.679	1.761

Table S5: Proportions of (100), (110) and (111) surfaces of pure metal nanoparticles under two

 different given pressures at T=500 K

		100	110	111
DL	P=1bar	21%	11%	68%
Kn	P=10bar	21%	10%	69%
Ir	P=1bar	20%	0%	80%
	P=10bar	19%	0%	81%
N.1.	P=1bar	23%	0%	77%
INI	P=10bar	22.4%	0%	77.6%
Dd	P=1bar	26%	17%	57%
ru	P=10bar	26%	16%	58%
D4	P=1bar	22%	5%	73%
Pt	P=10bar	22%	4%	74%

Table S6: Proportions of (100), (110) and (111) surfaces of alloy metal nanoparticles under two different given pressures at T=500 K.

		100	110	111
Ir@Rh	P=1bar	22%	15%	63%
	P=10bar	22%	14%	64%
	P=1bar	18%	0%	82%
Ir@NI	P=10bar	17%	0%	83%
Ir@Pd	P=1bar	24%	25%	51%
	P=10bar	24%	25%	51%

Lu@D4	P=1bar	19.4%	5.6%	75%
Irært	P=10bar	19.2%	4.4%	76.4%

Table S7: Proportions of (100), (110) and (111) surfaces of alloy metal nanoparticles under

	300K				500K			700K		
	100	110	111	100	110	111	100	110	111	
Ir@Rh	22%	10%	68%	22%	15%	63%	22%	19%	59%	
Ir@Ni	16%	0%	84%	18%	0%	82%	19%	0%	81%	
Ir@Pd	24%	20%	56%	24%	25%	51%	24%	31%	45%	
Ir@Pt	18%	0%	82%	19.4%	5.6%	75%	20%	11%	69%	

different temperatures at P=1bar.

Table S8: The pure metal activity(S⁻¹).

Rh	Ir	Ni	Pd	Pt
20.168	19.330	14.405	17.551	19.759

Table S9: The alloy activity(S⁻¹).

	300K	500K	700K
Ir@Rh	15.745	20.741	23.840
Ir@Ni	12.862	16.902	19.443
Ir@Pd	19.049	21.476	23.533
Ir@Pt	18.242	23.785	25.819

Table S10: The dissociation barrier of methane and adsorption energy of methyl on Ni(111)

surface	with	and	without	the	van	der	Waals	correctio	n.

	Uncorrected	Van der Waals	
	Uncorrecteu	correction	
Dissociation barrier(E _b /eV)	0.886	0.575	

Adsorption energy(E _{ads} /eV)	-2.344	-2.650
---	--------	--------

* Using DFT calculations (DFT-D3), the energy barrier and the adsorption energy of methyl with and without van der Waals correction are shown in Table S10. With the van der Waals correction, it is found that the energy barrier is decreased from 0.886 eV to 0.575 eV. Compared with the previous works, it is found that the adsorption energy of methyl on Ni(111) surface is closed to those previous results, e.g., -2.24 eV obtained byLai et al. [1], -1.97eV obtained by Wang et al. [2],-1.98 eV obtained by Zhu et al. [3], -2.60eV obtained by Upton et al. [4]and -1.86 eV obtained by Wonchoba and Truhlar[5]. The van der Waals correction strengthens the adsorption energy of methyl on the Ni(111) surface.

FigureS1: Wulff structures of Ni, Pd, Pt, Rh and Ir metals at different pressures.

Figure S3: Transition states of methane activation on different pure metal surfaces including (100), (110) and (111) surfaces.

Figure S4: Transition states of methane activation on different alloy metal surfaces including (100), (110) and (111) surfaces.

FigureS5: Wulff structures of Ir@M alloy at different pressures.

FigureS6: Wulff structures of Ir@M alloy at different temperatures.

References:

[1] W. Lai, D. Xie, D.H. Zhang, First-principles study of adsorption of methyl, coadsorption of methyl and hydrogen, and methane dissociation on Ni(100), Surface Science, 594 (2005) 83-92.

[2] B. Xing, X.-Y. Pang, G.-C. Wang, C–H bond activation of methane on clean and oxygen precovered metals: A systematic theoretical study, Journal of Catalysis, 282 (2011) 74-82.

[3] Y.-A. Zhu, Y.-C. Dai, D. Chen, W.-K. Yuan, First-principles calculations of CH4 dissociation on Ni(100) surface along different reaction pathways, Journal of Molecular Catalysis A: Chemical, 264 (2007) 299-308.

[4] T.H. Upton, Theoretical studies of the decomposition of methanol on Ni(100), Journal of Vacuum Science and Technology, 20 (1982) 527-531.

[5] Steven E. Wonchoba, Donald G. Truhlar, Embedded Diatomics-in-Molecules Potential Energy Function for Methyl Radical and Methane on Nickel Surfaces, Journal of Physical Chemistry B 102 (1998) 6842-6860