Triangular boron carbon nitrides: An unexplored family of chromophores with unique properties for photocatalysis and optoelectronics

Electronic Supporting Information

Sebastian Pios¹, Xiang Huang¹, Andrzej L. Sobolewski² and Wolfgang Domcke^{1*}

¹ Department of Chemistry, Technical University of Munich, 85747 Garching, Germany

² Institute of Physics, Polish Academy of Sciences, PL-02-668 Warsaw, Poland

* corresponding author; Email: <u>domcke@ch.tum.de</u>

Section S1: Additional data for the compounds of Chart 1

Table S1: Vertical excitation energies (in eV) and oscillator strengths (in parentheses) of 1.1.

Singlet		Triplet	
A2'	1.02 (0.000)	A_2'	1.18
<i>E'</i>	3.14 (0.520)	<i>E'</i>	2.25
$A_{I}^{\prime\prime}$	4.84 (0.000)	<i>E'</i>	4.27
<i>E'</i>	5.07 (0.768)	$A_{I}^{\prime\prime}$	4.84

Table S2: Vertical excitation energies (in eV) and oscillator strengths (in parentheses) of 2.1.

Singlet		Trip	let
A_2'	1.63 (0.000)	<i>E'</i>	1.91
A_{1}'	2.25 (0.000)	A_{I}'	1.93
<i>E'</i>	2.37 (0.586)	A_2'	1.94
<i>E'</i>	3.16 (0.110)	Ε'	2.88

Table S3: Vertical excitation energies (in eV) and oscillator strengths (in parentheses) of **3.1**.

Sing	let	Triplet	
A_2'	1.19 (0.000)	A_2'	1.42
<i>E'</i>	2.27 (1.262)	<i>E'</i>	1.89
<i>E'</i>	2.51 (0.000)	<i>E'</i>	2.36
A_2'	2.91 (0.000)	<i>E'</i>	2.51
A_{I}'	3.08 (0.000)	A_{I}'	2.78

Section S2: Additional data for the compounds of Chart 2

Singlet		Triplet	
A_2'	2.57 (0.000)	A_2'	2.85
A_1''	3.76 (0.000)	<i>E'</i>	3.67
<i>E"</i>	3.84 (0.000)	$A_{I}^{\prime\prime}$	3.76
E'	4.43 (0.538)	<i>E</i> ″	3.82

Table S4: Vertical excitation energies (in eV) and oscillator strengths (in parentheses) of **1.2**.

Table S5: Vertical excitation energies (in eV) and oscillator strengths (in parantheses) of **2.2**.

Singlet		Trip	let
A_2'	2.22 (0.000)	A_2'	2.57
E'	2.98 (0.446)	<i>E'</i>	2.67
A_{l}'	3.21 (0.000)	A_{I}'	2.99
$A_{I}^{\prime\prime}$	3.92 (0.000)	<i>E'</i>	3.49

Table S6: Vertical excitation energies (in eV) and oscillator strengths (in pa	arentheses) of 3.2.
---	-----------------------------------	---------------------

Singlet		Triplet	
A_2'	1.91 (0.000)	A_2'	2.22
Ε'	2.69 (0.966)	E'	2.36
E'	3.14 (0.077)	E'	2.92
A_2'	3.24 (0.000)	E'	3.02
E'	3.40 (1.177)	A_{l}'	3.12

Figure S1: HOMO and LUMO of the molecules **1.2** (a and b), **2.2** (c, d and e, f) and **3.2** (g and h), respectively, at their ground-state equilibrium structures.

Section S3: Molecular orbitals of Hz, Nz and Dz

Chart S1: Selected asymmetrically $CH \rightarrow N$ substituted derivatives of **3.1**.

Table S7: Vertical excitation energies (in eV) and oscillator strengths (in parentheses) for two selected asymmetrically $CH \rightarrow N$ substituted derivatives of **3.1**. The corresponding structures are shown in Chart S1.

State	3.3	3.4
$S_{I}A'$	1.63 (0.020)	1.68 (0.010)
$S_2 A'$	2.46 (0.429)	2.44 (0.350)
$S_3 A'$	2.65 (0.645)	2.63 (0.646)
$S_4 A'$	2.80 (0.084)	2.92 (0.201)
$T_{I}A'$	1.79	1.93
$T_2 A'$	2.13	2.19
$T_3 A'$	2.22	2.26
$T_4 A'$	2.63	2.63

Section S5: Additional selected fluorinated derivatives of nonazine

Chart S2: Selected fluorinated derivatives of Nz (2.2).

Table S8: Vertical excitation energies (in eV) and oscillator strengths (in parentheses) for selected fluorinated derivatives of Nz (2.2). 2.9 exhibits the lowest S_1 energy, while 2.10 and 2.11 exhibit the highest oscillator strength of the S_1 state. The corresponding structures are shown in Chart S2.

State	2.9	2.10	2.11
$S_{l}A'$	1.86 (0.000)	2.14 (0.022)	2.26 (0.022)
$S_2 A'$	2.61 (0.350)	2.92 (0.199)	3.06 (0.168)
$S_3 A'$	-	3.07 (0.162)	3.14 (0.189)
$S_4 A'$	2.80 (0.000)	3.20 (0.011)	3.33 (0.016)
$T_1 A'$	2.18	2.29	2.41
$T_2 A'$	2.27	2.64	2.75
$T_3 A'$	-	2.82	2.90
$T_4 A'$	3.14	2.97	3.10

Section S6: Selected fluorinated derivatives of dodecazine

Chart S3: Selected fluorinated derivatives of Dz (3.2).

State	Symmetry	3.5	Symmetry	3.6	Symmetry	3.7
S_{I}	B ₂	1.98 (0.006)	A ₂ '	2.17 (0.000)	B ₂	1.91 (0.015)
S_2	A ₁	2.70 (0.468)	E'	2.93 (1.040)	B ₂	2.60 (0.547)
S_3	B ₂	2.85 (0.514)		-	A ₁	2.79 (0.326)
S_4	A ₁	3.17 (0.017)	E'	3.35 (0.252)	B ₂	2.96 (0.003)
T_{I}	B ₂	2.27	A ₂ '	2.48	B ₂	1.98
T_2	A ₁	2.39	E'	2.50	B_2	2.32
T_3	B ₂	2.45		-	B ₂	2.79
T_4	A ₁	2.94	E'	3.12	B ₂	2.95

Table S9: Vertical excitation energies (in eV) and oscillator strengths (in parentheses) for selected fluorinated derivatives of Dz (**3.2**). The corresponding structures are shown in Chart S3.

Section S7: Jahn-Teller-Effect in the ³E' state of 2.1 and 2.2

The JT effect in the ³E' state as well as PJT interactions among the ³A₁', ³A₂' and ³E' states arising from excitation from the degenerate HOMO to the degenerate LUMO remove the degeneracy of the ³E' state and lead to a stabilization of the lower adiabatic potential energy. The components E_x and E_y of the E' state transform as the B₁ and A₁ representations in C_{2v} symmetry, respectively. The minimum of the A₁ surface represents the minimum of the (P)JT distorted surface of the E' state. The B₁ surface exhibits a stationary point which represents the saddle point for the so-called pseudorotation. The difference between the vertical excitation energy of the E' state and the minimum of the A₁ state is the (P)JT stabilization energy.

The excitation energies from the electronic ground state to the minima and saddle points of the ${}^{3}E'$ surface (adiabatic excitation energies) are listed in Tables S10 and S11 for **2.1** and **2.2**, respectively. The energies for vertical emission from the excited-state stationary points to the electronic ground state (vertical emission energies) are also listed in Tables S10 and S11.

A schematic representation of the potential-energy surfaces of the ${}^{1}A_{2}'$, ${}^{3}A_{2}'$ and ${}^{3}E'$ states of **2.1** and **2.2** is given by Fig. S2. For clarity, only the lower component of the ${}^{3}E'$ surface is shown. For **2.1**, the (P)JT coupling reduces the vertical S_{1} - T_{1} gap of - 0.28 eV to an adiabatic S_{1} - T_{1} gap of merely - 0.02 eV. For **2.2**, the (P)JT coupling reduces the vertical S_{1} - T_{1} gap of - 0.35 eV to an adiabatic S_{1} - T_{1} gap of - 0.28 eV.

It can be seen in Tables S10 and S11 and in Fig. S2 that for the nondegenerate states $({}^{1}A_{2}', {}^{3}A_{2}')$ the difference between the adiabatic excitation energies and the vertical emission energies is very small, which reflects the unusual rigidity of the BCNs in nondegenerate excited states.

Table S10: Adiabatic excitation energies (E_a) , vertical emission energies (E_{em}) (in eV) and leading electronic configurations of the lowest excited states of **2.1** calculated with the ADC(2)/cc-pVDZ method at the respective ADC(2)-optimized geometries.

State	Ea	E _{em}	electronic configuration
¹ A ₂ '	1.59	1.58	$0.70(5a_2-8b_2)+0.70(7b_2-6a_2)$
${}^{3}E_{y}({}^{3}A_{1})$	1.61	1.27	$0.98(5a_2-6a_2)$
${}^{3}E_{x}({}^{3}B_{1})$	1.85	1.80	0.98(7b ₂ -6a ₂)
³ A ₂ '	1.91	1.90	$0.70(5a_2-8b_2)+0.70(7b_2-6a_2)$

Table S11: Adiabatic excitation energies (E_a), vertical emission energies (E_m) (in eV) and leading electronic configurations of the lowest excited states of **2.2** calculated with the ADC(2)/cc-pVDZ method at the respective ADC(2)-optimized geometries.

State	Ea	E _{em}	electronic configuration
¹ A ₂ '	2.17	2.14	$0.69(5a_2-8b_2)-0.69(7b_2-6a_2)$
${}^{3}E_{y}({}^{3}A_{1})$	2.45	1.94	0.97(7b ₂ -8b ₂)
${}^{3}E_{x}({}^{3}B_{1})$	2.50	2.42	$0.95(5a_2-8b_2)$
³ A ₂ '	2.52	2.49	$0.70(5a_2-8b_2)-0.70(7b_2-6a_2)$

Figure S2: Schematic representation of the potential-energy surfaces of the ${}^{1}A_{2}'$, ${}^{3}A_{2}'$ and ${}^{3}E'$ states of compounds **2.1** and **2.2**. Adiabatic excitation energies are given by roman fonts; vertical emission energies are given by italic fonts (see Tables S10 and S11).

Section S8: Cartesian coordinates

Cartesian coordinates in Angstrom of Cz (1.1) at the MP2/cc-pVDZ level.

С	-2.1261712	-1.2025280	0.0000000
С	-0.7073599	-1.2251833	0.0000000
N	0.0000000	0.0000000	0.0000000
С	-0.7073599	1.2251833	0.0000000
С	-2.1261712	1.2025280	0.0000000
С	-2.8275277	0.0000000	0.0000000
С	1.4147198	0.0000000	0.0000000
С	2.1045054	1.2400543	0.0000000
С	1.4137639	2.4487108	0.0000000
С	0.0216658	2.4425823	0.0000000
С	0.0216658	-2.4425823	0.0000000
С	1.4137639	-2.4487108	0.0000000
С	2.1045054	-1.2400543	0.0000000
Η	-2.6372860	2.1682456	0.0000000
Η	-0.5591128	3.3680794	0.0000000
Η	3.1963988	1.1998339	0.0000000
Η	3.1963988	-1.1998339	0.0000000
Η	-0.5591128	-3.3680794	0.0000000
Η	-2.6372860	-2.1682456	0.0000000
Η	-3.9229787	0.0000000	0.0000000
Η	1.9614894	-3.3973992	0.0000000
Н	1.9614894	3.3973992	0.0000000

Cartesian coordinates in Angstrom of Hz (1.2) at the MP2/cc-pVDZ level.

N	-2.3770694	0.0167866	0.0000000
С	-1.2302088	-0.6816424	0.0000000
N	-0.0000035	0.0000018	0.0000000
С	0.0247821	1.4061780	0.0000000
N	-1.1300922	2.0913252	0.0000000
С	-2.2459412	1.3500242	0.0000000
С	1.2054004	-0.7245397	0.0000000
N	2.3761902	-0.0669661	0.0000000
С	2.2921121	1.2700625	0.0000000
N	1.2030653	2.0502198	0.0000000
N	-1.2460863	-2.0243537	0.0000000
С	-0.0461543	-2.6200497	0.0000000
N	1.1740040	-2.0669785	0.0000000
Η	-3.1857918	1.9149024	0.0000000
Η	-0.0655010	-3.7164210	0.0000000
Η	3.2512947	1.8014504	0.0000000

Cartesian coordinates in Angstrom of **2.1** at the MP2/cc-pVDZ level.

С	-0.7292978	3.6862196	0.0000000
С	-0.0040452	2.4749592	0.0000000
N	-0.7261856	1.2577904	0.0000000
С	-2.1413550	1.2409829	0.0000000
С	-2.8277109	2.4747002	0.0000000
С	-2.1263455	3.6829384	0.0000000
С	-2.7962504	0.0000000	0.0000000
С	-2.1413550	-1.2409829	0.0000000
Ν	-0.7261856	-1.2577904	0.0000000
С	-0.0040452	-2.4749592	0.0000000
С	-0.7292978	-3.6862196	0.0000000
С	-2.1263455	-3.6829384	0.0000000
С	-2.8277109	-2.4747002	0.0000000
С	1.3981252	-2.4216239	0.0000000

С	2.1454002	-1.2339764	0.0000000
Ν	1.4523712	0.0000000	0.0000000
С	2.1454002	1.2339764	0.0000000
С	3.5570087	1.2115194	0.0000000
С	4.2526910	0.0000000	0.0000000
С	3.5570087	-1.2115194	0.0000000
В	0.0000000	0.0000000	0.0000000
С	1.3981252	2.4216239	0.0000000
Η	-2.6741502	-4.6317640	0.0000000
Η	-3.8889339	0.0000000	0.0000000
Н	-2.6741502	4.6317640	0.0000000
Η	1.9444670	3.3679156	0.0000000
Η	1.9444670	-3.3679156	0.0000000
Н	5.3483004	0.0000000	0.0000000
Н	-3.9207361	-2.4500906	0.0000000
Η	-3.9207361	2.4500906	0.0000000
Η	-0.1614726	4.6205024	0.0000000
Η	4.0822088	2.1704118	0.0000000
Н	4.0822088	-2.1704118	0.0000000
Н	-0.1614726	-4.6205024	0.0000000

Cartesian coordinates in Angstrom of Nz(2.2) at the MP2/cc-pVDZ level.

N	3.4842312	1.2145238	0.0000000
С	2.1335374	1.2174790	0.0000000
Ν	1.4327146	0.0000000	0.0000000
С	2.1335374	-1.2174790	0.0000000
Ν	3.4842312	-1.2145238	0.0000000
С	4.0562904	0.0000000	0.0000000
С	1.3918435	-2.4107437	0.0000000
C	0.0124010	2 45(4271	0 000000

- C -0.0124010 -2.4564371 0.0000000
- N -0.7163573 -1.2407672 0.0000000
- B 0.0000000 0.0000000 0.0000000
- C 1.3918435 2.4107437 0.0000000
- C -0.0124010 2.4564371 0.0000000

Ν	-0.7163573	1.2407672	0.0000000
Ν	-0.6903071	-3.6246947	0.0000000
Η	5.1533873	0.0000000	0.0000000
Ν	-0.6903071	3.6246947	0.0000000
С	-2.1211364	-1.2389581	0.0000000
С	-2.1211364	1.2389581	0.0000000
С	-2.0281452	3.5128505	0.0000000
С	-2.0281452	-3.5128505	0.0000000
Ν	-2.7939241	2.4101709	0.0000000
Ν	-2.7939241	-2.4101709	0.0000000
С	-2.7836870	0.0000000	0.0000000
Н	1.9368801	-3.3547748	0.0000000
Н	-2.5766936	-4.4629643	0.0000000
Н	-3.8737602	0.0000000	0.0000000
Н	1.9368801	3.3547748	0.0000000
Н	-2.5766936	4.4629643	0.0000000

Cartesian coordinates in Angstrom of 3.1 at the MP2/cc-pVDZ level.

С	-1.2143575	0.0000000	4.9822765
С	-1.2349458	0.0000000	3.5690907
Ν	0.0000000	0.0000000	2.8873311
С	1.2349458	0.0000000	3.5690907
С	1.2143575	0.0000000	4.9822765
С	0.0000000	0.0000000	5.6737176
С	-2.4269998	0.0000000	2.8193792
С	-2.4782067	0.0000000	1.4179996
С	-3.6662591	0.0000000	0.6729879
С	-3.7195022	0.0000000	-0.7341992
N	-2.5115608	0.0000000	-1.4627794
С	-2.4844906	0.0000000	-2.8731675
С	-3.7186463	0.0000000	-3.5619464
С	-4.9246499	0.0000000	-2.8560505
С	-4.9330330	0.0000000	-1.4586714
В	-1.2527563	0.0000000	-0.7360746

Ν	-1.2497769	0.0000000	0.7087960
В	0.0000000	0.0000000	1.4337763
N	1.2497769	0.0000000	0.7087960
С	2.4782067	0.0000000	1.4179996
С	3.6662591	0.0000000	0.6729879
С	3.7195022	0.0000000	-0.7341992
Ν	2.5115608	0.0000000	-1.4627794
С	2.4844906	0.0000000	-2.8731675
С	3.7186463	0.0000000	-3.5619464
С	4.9246499	0.0000000	-2.8560505
С	4.9330330	0.0000000	-1.4586714
В	1.2527563	0.0000000	-0.7360746
Ν	0.0000000	0.0000000	-1.4559217
С	0.0000000	0.0000000	-2.8743701
С	-1.2392465	0.0000000	-3.5307117
С	1.2392465	0.0000000	-3.5307117
С	2.4269998	0.0000000	2.8193792
Η	0.0000000	0.0000000	6.7696094
Η	-5.8736764	0.0000000	-3.4040513
Η	5.8736764	0.0000000	-3.4040513
Η	-4.6164788	0.0000000	1.2130589
Η	-3.3697978	0.0000000	3.3723073
Η	3.3697978	0.0000000	3.3723073
Η	4.6164788	0.0000000	1.2130589
Η	-1.2467256	0.0000000	-4.6236588
Η	1.2467256	0.0000000	-4.6236588
Η	-3.6973354	0.0000000	-4.6547666
Η	3.6973354	0.0000000	-4.6547666
Η	-5.8687629	0.0000000	-0.8937602
Η	5.8687629	0.0000000	-0.8937602
Η	2.1713971	0.0000000	5.5102593
Η	-2.1713971	0.0000000	5.5102593

Cartesian coordinates in Angstrom of Dz (3.2) at the MP2/cc-pVDZ level.

В	-0.7169416	1.2417793	0.0000000
N	-1.4439754	0.0000000	0.0000000
В	-0.7169416	-1.2417793	0.0000000
Ν	0.7219877	-1.2505193	0.0000000
В	1.4338832	0.0000000	0.0000000
N	0.7219877	1.2505193	0.0000000
N	2.8682226	0.0000000	0.0000000
Ν	-1.4341113	2.4839536	0.0000000
N	-1.4341113	-2.4839536	0.0000000
С	1.4275984	2.4726730	0.0000000
С	1.4275984	-2.4726730	0.0000000
С	-2.8551968	0.0000000	0.0000000
С	-2.8401170	2.4816614	0.0000000
С	-0.7291233	3.7004441	0.0000000
С	3.5692403	1.2187828	0.0000000
С	3.5692403	-1.2187828	0.0000000
С	-2.8401170	-2.4816614	0.0000000
С	-0.7291233	-3.7004441	0.0000000
Ν	-1.4084135	4.8701842	0.0000000
N	-3.5134965	3.6548140	0.0000000
С	-2.7463162	4.7567593	0.0000000
Ν	4.9219100	-1.2153703	0.0000000
Ν	4.9219100	1.2153703	0.0000000
С	5.4926325	0.0000000	0.0000000
Ν	-1.4084135	-4.8701842	0.0000000
Ν	-3.5134965	-3.6548140	0.0000000
С	-2.7463162	-4.7567593	0.0000000
С	0.6750714	3.6646625	0.0000000
С	2.8361552	2.4169602	0.0000000
С	0.6750714	-3.6646625	0.0000000
С	2.8361552	-2.4169602	0.0000000
С	-3.5112265	-1.2477023	0.0000000

С	-3.5112265	1.2477023	0.0000000
Н	-3.2950197	5.7071415	0.0000000
Η	6.5900394	0.0000000	0.0000000
Н	-3.2950197	-5.7071415	0.0000000
Н	3.4152579	3.3420343	0.0000000
Η	1.1866576	4.6287172	0.0000000
Η	-4.6019155	1.2866830	0.0000000
Η	-4.6019155	-1.2866830	0.0000000
Η	3.4152579	-3.3420343	0.0000000
Н	1.1866576	-4.6287172	0.0000000