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1 Scaled Eckart Barrier Model

By close inspection of the performance of the Eckart Barrier Model in Fig. 4 of the main document
one notices that isotopologs typically have similar over- or underestimations. This supports the
plausible expectation that isotopologs have more similar barrier shapes than chemically distinct
species and thus also more akin deviations from the Eckart idealization. More similar errors in
their quantum chemical evaluation likely also contribute. One can exploit this observation with
eqn (S1). Herein ∆(Eckart) corresponds to the calculation through the Eckart Barrier Model, given
by eqn (S2).

∆D(calc) = ∆H(exp)
∆D(Eckart)

∆H(Eckart)
(S1)

∆(Eckart) =
ω0hc√
πe

exp

[
− 2π

|ωi|

(
V0 −

√
E0V0

)]
(S2)

For deuterated alcohols the correlation between the experimental tunneling splittings and those
estimated from their lighter isotopologs is shown in Fig. S1.

Figure S1: Correlation between the experimental tunneling splittings for deuterated alcohols and
those calculated from their lighter isotopologs by the Scaled Eckart Barrier Model through eqn (S1).
The diagonal line represents perfect agreement.

In all cases the splitting is slightly to moderately underestimated, showing that the Eckart
Barrier Model overestimates the isotope effect. For methanol the effect from the smaller increase of
the tunneling mass by deuteration of the methyl group is better anticipated than from deuteration
of the hydroxy group. Interestingly, the effect of deuteration on benzyl alcohol is also reasonably
well captured, making it the only simple model discussed in this work to do so. However, the very
extensive error cancellation for this case might be at least partly accidental.

Taking only hydroxy deuteration into account and excluding BnOH, one obtains for the 10
data points MSDF = 1.39 and MAX = 1.7 for iPrOD. This can be compared to MSDF = 1.87
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and MAX = 3.2 for iPrOD for the same alcohols in the original Eckart Barrier Model, showing the
improvement.

With all values deviating in the same direction, it is tempting to employ a further empirical
correction. A linear regression for the hydroxy deuteration data in Fig. S1 with a fixed slope of
unity yields an intercept of 0.14, which converts to a scaling by factor 1.38. This is equivalent
to moving all data points by 0.14 to the right in Fig. 1 for overall better agreement with the
diagonal line. Using eqns (S3) and (S4) brings the deviations further down to MSDF = 1.14 and
MAX = 1.32 for HCCCH2OD.

∆D(calc) = 1.38∆H(exp)
∆D(Eckart)

∆H(Eckart)
(S3)

∆H(calc) = 1.38−1∆D(exp)
∆H(Eckart)

∆D(Eckart)
(S4)
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2 Performance overview

Table S1: Performance of the investigated models for the reproduction of tunneling splittings of
alcohols. MSDF is the mean symmetric deviation factor, defined as the arithmetic average of the
ratios between experiment and calculation taken as ≥ 1, and MAX is the maximum symmetric
deviation factor. n = 27 is the full set of splittings given in Table 1 of the main document, with
the exclusion of only BnOH/D. n = 21 is a subset of alcohols with more similar properties with the
further exclusion of CH3OH/D, MeOCH2OH, CF3CH2OH/D and FCH2OH. n = 10 are deuterated
alcohols (expect BnOD) for which also the splitting of the protiated isotopolog is known, so that
models for the isotope effect can be applied. n = 77 are isotopologic pairs of chemically very diverse
systems with hydrogens tunneling, with the 10 pairs of alcohols forming a subset.

n Model eqn MSDF MAX
27 Eckart Barrier (6) 1.75 4.9
27 Barrier Height (9),(10) 1.50 3.0
27 Effective Barrier Height (19),(20) 1.39 2.4

21 Eckart Barrier (6) 1.65 2.6
21 Barrier Height (9),(10) 1.39 2.3
21 Restricted Barrier Height (15),(16) 1.21 1.5
21 Effective Barrier Height (19),(20) 1.37 2.4

10 Eckart Barrier (6) 1.87 3.2
10 Barrier Height (10) 1.45 2.2
10 Effective Barrier Height (20) 1.50 2.4
10 Scaled Eckart Barrier (S4) 1.14 1.3
10 Mass Scaling (25) 1.19 1.4
10 Direct Correlation (27) 1.15 1.3
10 Universal Direct Correlation (32) 1.25 1.6

77 Universal Direct Correlation (32) 1.33 2.6
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3 List of tunneling splittings in the Universal Direct Corre-
lation Model

Table S2: Isotopologic pairs of experimental hydrogen tunneling splittings for diverse compounds
reported in the literature and used in the Universal Direct Correlation Model. Given values are
in cm−1hc and were rounded to two leading digits. The list continues in Table 1 of the main
document (excluding benzyl alcohol) and in Table S3.

category system ∆H(exp) ∆D(exp)

thiol torsion ethanethiol 5.9·10−2 1 2.3·10−3 1

1-propanethiol 5.4·10−2 2 1.9·10−3 2

1-butanethiol 5.7·10−2 3 1.9·10−3 3

2-propyne-1-thiol 2.3·10−1 4 1.3·10−2 4

2-propanethiol 1.9·10−2 5 3.4·10−4 5

trifluoromethanethiol 1.0·10−1 6 3.0·10−3 6

methylsilanethiol 9.4·10−2 7 3.9·10−3 7

selenol torsion ethaneselenol 3.6·10−2 8 1.3·10−3 8

2-propaneselenol 1.2·10−2 9 1.7·10−4 9

diol torsion 1,2-ethanediol g′Ga 2.3·10−1 10 9.8·10−3 10

1,4-butanediol I 2.1·10−4 11 4.6·10−7 11

phenol torsion phenol 1.9·10−3 12 7.6·10−6 12

4-chlorophenol 2.7·10−3 13 1.3·10−5 13

4-fluorophenol 5.9·10−3 12 3.9·10−5 12

thiophenol torsion thiophenol 2.7·10−2 14 3.7·10−4 14

other torsion hydrogen peroxide 1.1·10+1 15 1.9 16

other torsion ethylene cation 8.4·10+2 17 3.7·10+2 17

other torsion ethylamine 3.9·10−2 18 9.8·10−4 18

nitrogen inversion ammonia 7.9·10−1 19 5.3·10−2 20

methylamine 9.7·10−1 21 7.6·10−2 21

ethylamine 4.6·10−2 18 1.2·10−3 18

aniline 4.1·10+1 22 1.3·10+1 22

ethylmethylamine 6.6·10−2 23 2.2·10−3 23

dimethylamine 8.8·10−2 24 3.6·10−3 24

cyanamide 5.0·10+1 25 1.6·10+1 25

amino cyclobutane 4.0·10−1 26 1.9·10−2 26

isocyanamide 3.7·10−1 27 1.5·10−2 27

ammonia-argon 7.6·10−1 28 4.8·10−2 28

2-aminopyridine 8.7·10+1 29 3.9·10+1 29

hydrazine 2.7·10−1 30 1.5·10−2 31

oxygen inversion hydronium 5.5·10+1 32 1.5·10+1 33

geared rotation hydrogen fluoride dimer 6.6·10−1 34 5.3·10−2 34

hydrogen chloride dimer 1.5·10+1 35 6.0 36

pseudorotation methane cation 4.1 37 3.5·10−1 37

carbonic acid dimer formic acid + propiolic acid 9.7·10−3 38 1.2·10−4 39

acrylic acid dimer 2.9·10−2 40 1.0·10−3 40

benzoic acid + formic acid 1.8·10−2 41 2.8·10−4 41
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Table S3: Continuation of Table S2.

category system ∆H(exp) ∆D(exp)

out-of-plane bending H2O· · ·HF 6.4·10+1 42 3.2·10+1 42

acceptor switching water dimer 9.4 43 1.8 43

interchange (lower) water dimer 7.5·10−1 43 3.9·10−2 43

bifurcation (lower) water dimer 2·10−2 43 2.3·10−4 43

flip water trimer 4.4·10+2 43 2.1·102 43

bifurcation water trimer 9.6·10−3 43 1.7·10−4 43

bifurcation water + carbonmonoxide 5.6·10−1 44 3.4·10−2 44

solid solution in metal manganese 5.2·10+1 45 1.3·101 45

niobium doped with oxygen 1.9 46 1.6·10−1 46

niobium doped with nitrogen 1.4 46 1.1·10−1 46

rocking vinyl radical 5.4·10−1 47 4.0·10−2 47

hydrogen transfer malonaldehyde 2.2·10+1 48 2.9 48

tropolone 9.7·10−1 49 5.1·10−2 49

6-hydroxy-2-formylfulvene 1.2·10+2 50 3.6·10+1 50

ammonium reorientation (NH4)2SnCl6 2.4·10−2 51 2.4·10−4 52

ammonium torsion (NH4)2IrCl6 9.3·10+1 53 3.1·10+1 53

(NH4)2RuCl6 7.0·10+1 54 3.9·10+1 54

(NH4)2SnCl6 1.3·10+2 54 4.2·10+1 54

methyl torsion nitromethane crystal 1 bar 2.8·10−1 55 1.4·10−2 55

nitromethane crystal 4.8 kbar 4.4·10−1 55 2.3·10−2 55

acetamide crystal 2.6·10−1 56 9.5·10−3 56

(CH3)2SnCl2 crystal 2.6·10−1 57 2.1·10−2 57

(CH3COO)2Cu·H2O crystal 2.1·10−3 58 2.0·10−5 58

acetylsalicylic acid crystal 9.8·10−3 59 9.0·10−5 59

toluene crystal 2.0·10−1 60 8.9·10−3 60
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4 Further examples for the application of the Direct Corre-
lation Model

Figure S2: Correlation between the experimental inversion splittings of N-single-deuterated and
N-protiated symmetric primary amines and amides. Used values with references are given in
Table S4. lg

(
∆HD/cm−1hc

)
= 1.135·lg

(
∆HH/cm−1hc

)
−0.436. MSDF = 1.026 and MAX = 1.058

for cyanamide.

Table S4: Experimental inversion splittings for N-protiated and N-single-deuterated symmetric
primary amines, i.e. with both hydrogen atoms being equivalent in the inverting conformation.
Values are rounded to two leading digits and given in cm−1hc.

system ∆HH(exp) ∆HD(exp)

cyanamide 5.0·10+1 25 3.2·10+1 25

aniline 4.1·10+1 22 2.4·10+1 22

methylamine 9.7·10−1 21 3.3·10−1 61

isocyanamide 3.7·10−1 27 1.2·10−1 27

chloroamine 2.3·10−3 62 3.8·10−4 63
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Figure S3: Correlation between the experimental inversion splittings of N-double-deuterated and
N-single-deuterated symmetric primary amines and amides. Used values with references are given
in Tables S2 and S4. lg

(
∆DD/cm−1hc

)
= 1.24 · lg

(
∆HD/cm−1hc

)
− 0.61. MSDF = 1.12 and

MAX = 1.19 for methylamine.

Figure S4: Correlation between the experimental tunneling splittings of deuterated and protiated
thiols. Used values with references are given in Table S2. Values for trifluoromethanethiol were
multiplied by 2/3. lg

(
∆D/cm−1hc

)
= 1.44 · lg

(
∆H/cm−1hc

)
− 0.94. MSDF = 1.11 and MAX =

1.21 for ethanethiol.
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Figure S5: Correlation between the experimental tunneling splittings of deuterated and protiated
phenols. Values with references given in Table S2 were multiplied with 1/2. lg

(
∆D/cm−1hc

)
=

1.419 · lg
(
∆H/cm−1hc

)
− 1.123. MSDF = 1.0028 and MAX = 1.0042 for 4-chlorophenol.

Figure S6: Correlation between the experimental tunneling splittings of solid solutions of hy-
drogen in metals. Values with references are given in Table S3. lg

(
∆D/cm−1hc

)
= 1.311 ·

lg
(
∆H/cm−1hc

)
− 1.135. MSDF = 1.014 and MAX = 1.021 for H/D in niobium doped with

oxygen.
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Figure S7: Correlation between the experimental tunneling splittings of hydrogen transfer system.
Values with references are given in Table S3. lg

(
∆D/cm−1hc

)
= 1.35 · lg

(
∆H/cm−1hc

)
− 1.29.

MSDF = 1.07 and MAX = 1.10 for malonaldehyde.

Figure S8: Correlation between the experimental tunneling splittings of system with methyl group
tunneling. Values with references are given in Table S3. lg

(
∆D/cm−1hc

)
= 1.39·lg

(
∆H/cm−1hc

)
−

1.10. MSDF = 1.23 and MAX = 1.44 for (CH3)2SnCl2.
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5 Example inputs and outputs

Input and output files for the example methanol are provided as part of this supplementary in-
formation as separate files. Before calculating other alcohols it is recommended to do a quick
rerun to check whether the expected result is reproduced as stated in the output file as well as in
the included comment in the input file. Default settings might change in future versions of the
software, so that adjustments to the input might become necessary. The inputs were tested with
Gaussian 09 Rev. E.01 and Gaussian 16 Rev. A.03. The provided cartesian coordinates in the
input files are the optimized values taken from the output files.

A spreadsheet for the application of the models is provided as a separate file as well, again with
methanol as an example.
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6 Discussion of metrics for the evaluation of model perfo-
mance

Finding an appropriate metric to evaluate and compare performance between models is not trivial.

6.1 Mean absolute error (MAE)

With tunneling splittings spanning several orders of magnitude, common metrics for absolute
errors, such as the mean absolute error (MAE, eqn (S5)), become meaningless.

MAE =
1

n

n∑
j

|∆j(exp)−∆j(calc)| (S5)

An overestimation by 0.1 cm−1hc represents pinpoint accuracy for HCCCCH2OH (∆ = 21.8 cm−1hc),
but very poor performance for CF3CH2OD (∆ = 0.007 cm−1hc), so these two results should not
contribute equally to the sum of errors.

6.2 Mean absolute percentage error (MAPE)

A common metric for relative errors is the mean absolute percentage error (MAPE, eqn (S6)).

MAPE =
100%

n

n∑
j

|∆j(exp)−∆j(calc)|
∆j(exp)

(S6)

It works well for small relative errors but for larger ones the metric shows pronounced asymmetry.
An overestimation by a factor of two is twice as heavily penalized (|+100%|) as an underestimation
by the same factor (| − 50%|), while they arguably should be valued the same, at least when
preferring a multiplicative scale.

6.3 Symmetric mean absolute percentage error (SMAPE)

One metric in use to solve the symmetry problem is the symmetric mean absolute percentage error
(SMAPE, eqn (S7)), which uses instead the average of the calculated and experimental value as
the reference in the denominator.64,65

SMAE =
100%

n

n∑
j

|∆j(exp)−∆j(calc)|
[∆j(exp) + ∆j(calc)]/2

(S7)

However, it is hard to interpret. The previous example of a model being constantly a factor two off
target results in an odd value of SMAE = 67%. This metric is also very forgiving to larger errors.
A strong over- or underestimation by a factor of 10 yields a penalty of 164%, which is only about
four times as large as for an over- or underestimation by a far more acceptable factor of 1.5 (40%).
As a matter of opinion, this might be seen as ’robustness’ or ’ignorance’ of the metric to outliers.

6.4 Mean absolute geometric error (MAGE)

Easier interpretable is the mean absolute geometric error (MAGE, eqn (S8)).66

MAGE = exp

 1

n

n∑
j

∣∣∣∣ln(∆j(exp)

∆j(calc)

)∣∣∣∣
 (S8)

It can be rationalized as the geometric mean of ratios between calculated and experimental split-
tings, when always the smaller one is used in the denominator, so that ratios ≥ 1 result. MAGE is
also the MAE of the logarithmized tunneling splittings back converted to obtain a ’typical’ ratio
between calculation and experiment.

It is as well rather forgiving to larger errors due to the logarithmic scaling. For the discussed
example, the deviation by a factor of 10 is penalized ln(10)/ ln(1.5) ≈ 5.7 times as strongly as the
one with a factor of 1.5.
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6.5 Mean symmetric deviation factor (MSDF) and mean normalized
absolute factor error (MNAFE)

Arguably even easier interpretable and more intuitive than MAGE is the mean symmetric deviation
factor (MSDF, eqn (S9)).

MSDF =
1

n

n∑
j

exp

∣∣∣∣ln(∆j(exp)

∆j(calc)

)∣∣∣∣ (S9)

This metric was used before in a mean and median version.67 It is also closely related to the mean
normalized absolute factor error MNAFE (eqn (S10)).68

MNAFE =
1

n

n∑
j

[
exp

∣∣∣∣ln(∆j(exp)

∆j(calc)

)∣∣∣∣− 1

]
(S10)

Back converting the logarithmic deviations before the averaging (and not after as with MAGE) has
some advantages. MSDF can be rationalized as the arithmetic (instead of the geometric) mean
of the ratios between calculated and experimental values. This is equivalent to arithmetically
averaging relative or percentage errors of tunneling splittings (as it is done with MNAFE). E.g.,
ratios of 1.80 (80%) and 1.20 (20%) will arithmetically average to 1.50 (50%) instead geometrically
to 1.47 (47%) with MAGE. MSDF and MNAFE are thus closely related to a symmetrized MAPE
with a flexible denominator containing always the smaller value of either ∆j(exp) or ∆j(calc) as
reference.

MSDF and MNAFE penalize larger relative errors more heavily and more intuitively than both
SMAPE and MAGE. A deviation by a factor of 10 weights 18 times as much as a deviation by a
factor of 1.5, as one would intuitively expect from the associated percentage errors of 900%/50% =
18.

So why prefer MSDF over MNAFE (optionally multiplied by 100%)? The relative errors con-
tributing to MNAFE have the problem that they refer to either ∆j(exp) or ∆j(calc), depending
on which value is smaller, to reach the desired symmetry. This needs elaboration and special at-
tention of the reader, as values of MNAFE could be easily confused with those of the commonly
used MAPE. A stated underestimation by 200% is hard to understand and could be easily mis-
interpreted as the calculated value having the wrong sign. In a multiplicative system the desired
symmetry arises more natural, which is reflected in the language. It is common to state an under-
estimation by a factor of 3, even though a factor of 1/3 would be arguably more correct.
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7 Computed quantities for additional alcohols

Table S5: Calculated barrier heights with (V0) and without (Vel) harmonic vibrational zero-point
correction, as well as calculated harmonic torsional wavenumbers for the gauche equilibrium geom-
etry ω0 and for the transition state ωi of alcohols with a protiated (index H) or deuterated (index
D) hydroxy group. Splittings and barrier heights are given in cm−1hc, wavenumbers in cm−1. The
B3LYP-D3(BJ)/may-cc-pVTZ level was used.

alcohol V0,H V0,D Vel ω0,H ω0,D ωi,H ωi,D

ω2
i,H

ω2
i,D

NCCMe2OH 471 467 452 313 244 299i 223i 1.80
1PrOH Tg 421 407 398 275 193 302i 228i 1.76
1BuOH TTg 411 396 387 277 195 300i 226i 1.76
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[25] Z. Kisiel, A. Kraśnicki, W. Jabs, E. Herbst, B. P. Winnewisser and M. Winnewisser, J. Phys.
Chem. A, 2013, 117, 9889–9898.

[26] L. B. Favero, B. Velino, A. Maris and W. Caminati, J. Mol. Struct., 2002, 612, 357–367.

[27] M. Winnewisser and J. Reinstaedtler, J. Mol. Spectrosc., 1986, 120, 28–48.
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