
Electronic Supplementary Information

Formation of Dimethyl Carbonate via Direct Esterification of CO₂ with Methanol on reduced or stoichiometric CeO₂ (111) and (110) Surfaces

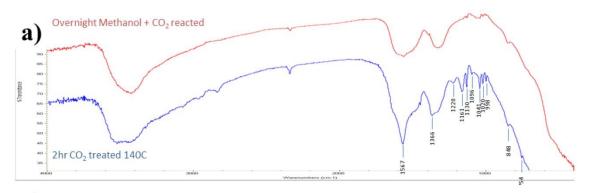

Jian Jiang, Chris M. Marin, Avinash Kumar Both, Chin Li Cheung, Lei Li*, and Xiao Cheng Zeng* Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588 To whom correspondence should be addressed: lil33@sustech.edu.cn; xzeng1@unl.edu

Figure S1. Computed total energy per unit cell of the bulk CeO₂ versus the lattice parameter (left panel). The right panel shows potential distribution along the Z direction for the simulated CeO₂ slab with one oxygen vacancy on the surface. The value 4.73 eV is the computed work function. The inset image shows the spin density of the CeO₂ (111) surface with one oxygen vacancy, suggesting Ce³⁺ is located next-nearest to the oxygen vacancy. The gray and the ivory balls represent oxygen and cerium atoms, respectively.

Figure S2. Energy profile computed for the reaction between the methoxy group and the adsorbed CO_2 molecule (in the bent configuration) on the reduced CeO_2 (111). The inset images represent the geometric structures for the reactant, transition and product states, respectively. The bond lengths are labelled in unit Å. The white, black, grey, red and ivory balls represent H, C, O in CeO_2 , O in CO_2 and methanol, and Ce atoms, respectively.

b) CO₂ Peaks Lost or diminished: 1567, 1366, 1161, 1130, 1041, 1020, 998

Figure S3. (a) Measured FTIR transmission spectra of CO_2 on treated ceria after cooling and venting (blue curve) and after a subsequent treatment with methanol (red curve). Note the pronounced peaks from 1567 cm⁻¹ to about 1000 cm⁻¹ which are removed after reacting with methanol at room temperature. (b) Peak positions (in cm⁻¹) which were found removed by the methanol compared to peak positions published for CO_2 on ceria. [Figure is taken from a PhD thesis¹] **Table S1.** Activation barrier of each elementary reaction for the DMC formation on the $CeO_2(111)$ surface. The symbol '*' represents the active site. The activation energy of the barrierless reaction is set as 0.01 eV and the corresponding reverse reaction is accordingly adjusted. The geometric structure of each state is presented in Figure S4.

	Elementary reactions	Forward reaction barrier (eV)	Reverse reaction barrier (eV)
	R1. $CO_2 + * \rightarrow CO^* \frac{linear}{2}$	0.01	0.27
	R2. $ME + * \rightarrow ME^*$	0.01	0.77
	R3. $CO \stackrel{* linear}{2} \rightarrow CO \stackrel{* bent}{2}$	0.18	0.67
	R4. $CO^* \frac{linear}{2} + ME^* \rightarrow MMC^* + H^*$	0.24	0.16
Stoichiometric active site	R5. $CO \stackrel{* bent}{2} + ME \stackrel{*}{\rightarrow} MMC \stackrel{*}{} + H \stackrel{*}{}$	0.67	0.20
	R6. $MMC^* + ME^* \rightarrow DMC^* + OH^*$	2.78	1.53
	R7. $DMC^* \rightarrow DMC$	0.54	0.01
	R8. $H^* + OH^* \rightarrow H_2O$	0.38	0.01
	R9. $CO_2 + *_{vacancy} \rightarrow CO *_2^{linear}$	0.01	0.44
	R10. ME + * $_{vacancy} \rightarrow ME^*$	0.01	1.03
	R11. $CO \stackrel{* \ linear}{2} \rightarrow CO \stackrel{* \ bent}{2}$	0.09	0.77
Reduced active site	R12. $CO \stackrel{* \ linear}{2} + ME \stackrel{*}{\rightarrow} MMC \stackrel{*}{+} H \stackrel{*}{+}$	0.01	1.38
	R13. $CO \stackrel{*}{_{2}} \stackrel{bent}{_{2}} + ME \stackrel{*}{_{2}} \rightarrow MMC \stackrel{*}{_{2}} + H \stackrel{*}{_{2}}$	2.71	2.21
	R14. $MMC^* + ME^* \rightarrow DMC^* + H^*$	1.00	0.43
	R15. $DMC^* \rightarrow DMC$	0.66	0.01
	R16. $H^* + 0H^* \rightarrow H_2 0^* + *_{vacancy}$	1.41	0.02
	R17. $H_2 0^* \to H_2 0$	0.74	0.01

Table S2. Activation barrier of elementary reaction of DMC formation on the $CeO_2(110)$ surface. The symbol '*' represents the active site. The activation energy of the barrierless reaction is set as 0.01 eV and the corresponding reverse reaction is accordingly adjusted. The geometric structure of each state is presented in Figure S5.

	Elementary reactions	Forward reaction barrier (eV)	Reverse reaction barrier (eV)
	R1. $CO_2 + * \rightarrow CO^* \frac{linear}{2}$	0.01	0.41
	R2. $ME + * \rightarrow ME^*$	0.01	1.11
	R3. $CO \stackrel{* linear}{\xrightarrow{2}} CO \stackrel{* bent}{\xrightarrow{2}}$	0.05	1.24
	R4. $CO \stackrel{* linear}{2} + ME \stackrel{*}{\rightarrow} MMC \stackrel{*}{+} H^{*}$	0.29	2.19
Stoichiometric	B5. $CO^* \stackrel{bent}{2} + ME^* \rightarrow MMC^* + H^*$	1.09	1.00
active site	R6. $MMC^* + ME^* \rightarrow DMC^* + OH^*$	3.26	2.16
	R7. $DMC^* \rightarrow DMC$	0.99	0.01
	R8. $H^* + OH^* \rightarrow H_2O$	1.14	0.01
	R9. $CO_2 + *_{vacancy} \rightarrow CO^* \frac{linear}{2}$	0.01	0.42
Reduced active site	R10. $CO \stackrel{* \ linear}{2} \rightarrow CO \stackrel{* \ bent}{2}_2$	0.11	1.54
	R11. $ME + *_{vacancy} \rightarrow ME^*$	0.01	1.32
	R12. $CO \xrightarrow{* bent_2}{2} \rightarrow CO \xrightarrow{* bent^{rotated}}{2}$	0.27	0.01
	R12. $CO \stackrel{* linear}{2} \rightarrow CO \stackrel{* bent_1}{2}$	0.27	1.30
	R14. $CO \stackrel{* linear}{2} + ME \stackrel{*}{\rightarrow} MMC \stackrel{*}{} + H^{*}$	0.39	1.26
	R15. $CO = \frac{*bent_2}{2} + ME^* \rightarrow MMC^* + H^*$	0.53	0.09
	R15. $2^{*bent^{rotated}}$ R16. $CO \xrightarrow{2}{2} + ME^* \rightarrow MMC^* + H^*$	1.17	0.99
	R17. $CO \xrightarrow{* bent^{rotated}}_{2} + ME^* \rightarrow MMC_1^* + H^*$	1.09	0.86
	R18. $CO \xrightarrow{* bent_1} + ME^* \rightarrow MMC^* + H^*$	1.10	1.05
	R19. $MMC^* + ME^* \rightarrow DMC^* + H^*$	1.39	0.47
	$\frac{1}{\mathbf{R20}} MMC_{1}^{*} + ME^{*} \rightarrow DMC^{*} + H^{*}$	1.50	0.76
	R21. $DMC^* \rightarrow DMC$	0.88	0.01
	R22. $H^* + 0H^* \rightarrow H_2 0^* + *_{vacancy}$	1.16	0.25
	R23. $H_2 O^* \to H_2 O$	1.18	0.07

CO ₂		Atom Type		Total Charge	Charge Transferred
	С	0	0		
STO_CeO ₂					
(110)					
Linear	3.48	6.33	6.33	16.14 e	0.14 e
Bent	3.44	6.69	6.70	16.83 e	0.83 e
Ov_CeO ₂					
(110)					
Linear	3.50	6.33	6.34	16.17 e	0.17 e
Bent ₁	3.46	6.70	6.71	16.87 e	0.87 e
Bent ₂	3.44	6.54	6.95	16.93 e	0.93 e
STO_CeO ₂					
(111)					
Linear	3.46	6.27	6.33	16.07 e	0.07 e
Bent	3.45	6.63	6.62	16.70 e	0.70 e
Ov_CeO ₂					
(111)					
Linear	3.44	6.20	6.44	16.09 e	0.09 e
Bent	3.46	6.62	6.74	16.81 e	0.81 e

Table S3. Bader charge analysis of pre-absorbed CO_2 (in different configuration) on pristine and reduced CeO_2 (110) and (111) surfaces.

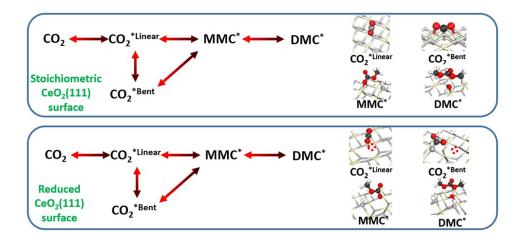
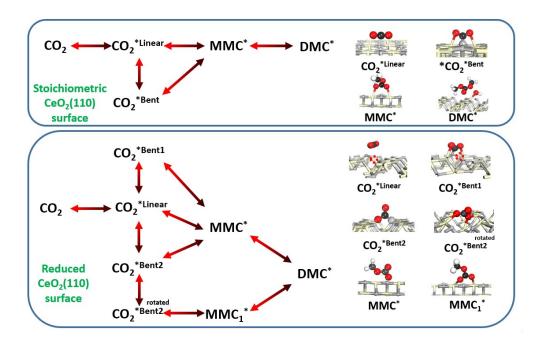



Figure S4. Pathways and intermediates of the DMC formation on the $CeO_2(111)$ surface.

Figure S5. Main pathways and intermediates of the DMC formation on the CeO_2 (110) surface.

Supporting Reference

1. Marin, C. M., *Synthesis and applications of lanthanide sulfides and oxides*. University of Nebraska-Lincoln: 2016.