Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2021

Supporting Information

Metallic VS_2 /graphene heterostructure as an ultra-high rate and high-specific capacity

anode material for Li/Na-ion batteries

Bo Liu,^{a*} Tianyu Gao,^a Peiguang Liao,^a Yufeng Wen,^a Mingjia Yao,^b Siqi Shi,^{b,c*} and Wenqing Zhang^d

^aCollege of Mathematics and Physics, Jinggangshan University, Ji'an, Jiangxi 343009, China

^bMaterials Genome Institute, Shanghai University, Shanghai 200444, China

°School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China

^dDepartment of Physics and Shenzhen Institute for Quantum Science & Technology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China

*E-mail: Bo Liu(liubo@jgsu.edu.cn), Siqi Shi (sqshi@shu.edu.cn)

Table S1. Two different phases with the same VS₂ formula and their total energies (in eV/f.u.)

Table S2. Two different stacking patterns with the same VS_2 /Graphene formula and their total energies (in eV/f.u.)

Figure S1. Calculated band structure of (a) graphene and (b) VS_2 . The Fermi level is set to 0 eV, and is indicated with a black dotted line.

Figure S2. Evolution of the VBM and CBM-VBM value as a function of the tensile or compressive strain (δ), taking the origin at the lowest energy configuration.

Figure S3. Calculated phonon dispersion curves for the structures of (a) graphene and (b) VS₂ monolayer.

Figure S4. Electron localization functions of the (100) slice of VS_2 /Graphene system with the stable (a) Li and (b) Na adsorption site.

	Diffusion	Energy barriers	Diffusion coefficients
Path	distance	(eV)	(cm^2/s)
Li@I _T -I _T	2.98	0.03	2.78×10-3
Li@T _v -T _v	3.14	0.15	2.98×10-5
Li@H _c -H _c	2.86	0.53	1.02×10 ⁻¹¹
Na@I _c -I _c	4.54	0.37	1.25×10 ⁻⁸
$Na@T_T-T_T$	3.31	0.08	4.96×10 ⁻⁴
Na@H _c -H _c	3.19	0.36	9.12×10-9

Table S3. Diffusion distances, energy barriers, and diffusion coefficients at 300 K for Li/Na Migration in the VS_2 /Graphene heterostructure.