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1 Mathematical justification of two key features in the slow stage

1.1 O(d(Γ+ − Γ−)/dt) ∼ O(d(ΓD − ΓL)/dt)

As discussed in the main text, the net charges at the left half of the ice slab are obtained as

e±(Γ+ − Γ−) = Pb,m
e±
e

+ Emε0ε∞
e±
e

(S1)

eDL(ΓD − ΓL) = −Pb,m
e±
e

+ Emε0ε∞
eDL
e

(S2)

By taking the time derivative of Eq. S1 and S2, we have

e±
d(Γ+ − Γ−)

dt
=
dPb,m
dt

e±
e

+
dEm
dt

ε0ε∞
e±
e

(S3)

eDL
d(ΓD − ΓL)

dt
= −

dPb,m
dt

e±
e

+
dEm
dt

ε0ε∞
eDL
e

(S4)

In the slow stage, the ionic defect transport weakens the electric field while enhances the polar-

ization field. Because the electric field are positive and polarization field are negative after the

pseudo-steady state, the changes of electric and polarization field are all negative corresponding to
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dPb,m/dt < 0 and dEm/dt < 0 in Eq. S3 and S4 as shown in Fig. 3d of the main text. There-

fore, we have |eDLd(ΓD − ΓL)/dt| < |e±d(Γ+ − Γ−)dt|, meaning |d(ΓD − ΓL)/dt| is smaller than

|d(Γ+ − Γ−)/dt| or at least at the same order of magnitude.

1.2 O(dFm/dt)� O(dEm/dt)

The time derivatives of Pb,m and Em decrease gradually when they approach to the steady state

as shown in Fig. 3d in the main text. Therefore, both Pb,m(t) and Em(t) are concave functions to

time such that their second derivatives to time are all positive. Now, if we take the time derivative

of Eq. S3 and S4, we obtain

e±
d2(Γ+ − Γ−)

dt2
=
d2Pb,m
dt2

e±
e

+
d2Em
dt2

ε0ε∞
e±
e

eDL
d2(ΓD − ΓL)

dt2
= −

d2Pb,m
dt2

e±
e

+
d2Em
dt2

ε0ε∞
eDL
e

(S5)

where
d2Pb,m

dt2
and d2Em

dt2
ε0ε∞ are all positive. Similar to Section 1.1, we have |eDLd2(ΓD−ΓL)/dt2| <

|e±d2(Γ+ − Γ−)/dt2|.
Next, integrating the governing equation of the density evolution of a charge carrier i over the

ice slab’s left half, we have

∫ W/2

0

∂ni
∂t

dx =

∫ W/2

0
(−∂ji

∂x
+Gi +Ri) dx

dΓi
dt

= −(ji|W/2 − ji|0) +

∫ W/2

0
(Gi +Ri) dx

(S6)

with ji|0 = 0 (Eq. 11). The net excesses of H+ defect over OH− defect and D defects over L defects

in ice slab’s left half then follow

d(Γ+ − Γ−)

dt
= (D+ −D−)

dn0
±

dx
|W/2 − (D+ +D−)

e±
kBT

n0
±,m

(
Em +

Φ

e±eDL
Pb,m

)
(S7)

d(ΓD − ΓL)

dt
= (DD −DL)

dn0
DL

dx
|W/2 − (DD +DL)

eDL
kBT

n0
DL,m

(
Em −

Φ

e2
DL

Pb,m

)
(S8)

Now, we multiply Eq. S7 with e± and Eq. S8 with eDL and take the time derivatives of them

e±
d2(Γ+ − Γ−)

dt2
=

d

dt

[
e±(D+ −D−)

dn0
±

dx
|W/2

]
− d

dt

[
(D+ +D−)

e2
±

kBT
n0
±,m

(
Em +

Φ

e±eDL
Pb,m

)]
(S9)

eDL
d2(ΓD − ΓL)

dt2
=

d

dt

[
eDL(DD −DL)

dn0
DL

dx
|W/2

]
− d

dt

[
(DD +DL)

e2
DL

kBT
n0
DL,m

(
Em −

Φ

e2
DL

Pb,m

)]
(S10)
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Taking advantage of the fact that the region near ice slab’s middle plane is bulk-like, the diffusion

terms are time independent and can be eliminated so that Eq. S9 and S10 can be simplified to

e±
d2(Γ+ − Γ−)

dt2
= − d

dt

[
e±(D+ +D−)

e±
kBT

n0
±,m

(
Em +

Φ

e±eDL
Pb,m

)]
(S11)

eDL
d2(ΓD − ΓL)

dt2
= − d

dt

[
eDL(DD +DL)

eDL
kBT

n0
DL,m

(
Em −

Φ

e2
DL

Pb,m

)]
(S12)

With |eDLd2(ΓD − ΓL)/dt2| < |e±d2(Γ+ − Γ−)/dt2|, we have the following relationship by

introducing Fm = Em − Pb,mΦ/e2
DL in Eq. S12.

d

dt

∣∣∣∣−eDL(DD +DL)
eDL
kBT

n0
DL,mFm

∣∣∣∣ < d

dt

∣∣∣∣−e±(D+ +D−)
e±
kBT

n0
±,m

(
Em +

Φ

e±eDL
Pb,m

)∣∣∣∣ (S13)

Because the ionic defect density is ∼ 106 times smaller than that of Bjerrum defects (i.e. n0
±,m �

n0
DL,m), we have

d

dt
|Fm| �

d

dt

∣∣∣∣(Em +
Φ

e±eDL
Pb,m

)∣∣∣∣ (S14)

Here, we replace Pb,m with Fm to obtain the relationship of Em and Fm

d

dt
|Fm| �

d

dt

∣∣∣∣(Em +
eDL
e±

(Em − Fm)

)∣∣∣∣ (S15)

Based on the absolute value inequality, we have

d

dt
|Fm| �

d

dt

∣∣∣∣(1 +
eDL
e±

)
Em

∣∣∣∣− d

dt

∣∣∣∣eDLe± Fm

∣∣∣∣ (S16)

Move the second term at the right hand side to the left hand side, we obtain∣∣∣∣dFmdt
∣∣∣∣� ∣∣∣∣dEmdt

∣∣∣∣ (S17)

2 Derivation of Pm in the slow stage

The derivation of Pm follows the similar approach to that of Em in the main text. Here, we

substitute Em in Eq. S7 with Pm and Fm.

d(Γ+ − Γ−)

dt
= − e

kBTm

Φ

e2
DL

n0
±,m(D+ +D−)Pb,m−

e±
kBTm

n0
±,m(D+ +D−)Fm + (D+−D−)

dn0
±

dx
|W/2

(S18)
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Substituting Fm with Eq. S8, we obtain

d(Γ+−Γ−)
dt

(D+ +D−)
n0
±,m

kBTm

+

e
eDL

d(ΓD−ΓL)
dt

(DD +DL)
n0
DL,m

kBTm

= − Φe

e2
DL

Pb,m(t)−
[

1− β±
1 + β±

Φ±
2Tm

− 1− βDL
1 + βDL

ΦDLe±
2TmeDL

]
dT

dx

(S19)

Because n0
DL,m ∼ 106n0

±,m and O(d(Γ+ − Γ−)/dt) ∼ O(d(ΓD − ΓL)/dt), the second term on the

left-hand side of Eq. S19 can be neglected. Substituting Eq. S1 into Eq. S19 we have,

d
dt

[
Pb,m + ε0ε∞

(
Φ
e2DL

Pb,m + Fm

)]
e2(D+ +D−)n0

±,m
= − Φe

e2
DL

Pb,m(t)+

[
1− β±
1 + β±

Φ±
2Tm

− 1− βDL
1 + βDL

ΦDLe±
2TmeDL

]
dT

dx
(S20)

Because O(dFm/dt)� O(dEm/dt) and Fm = Em − Pb,mΦ/e2
DL, we have

O(dFm/dt)� O(Φ/e2
DLdPb,m/dt). Therefore, the Fm term in Eq. S20 can be neglected.(

ε0ε∞ +
e2DL

Φ

)
kBTm

e2(D+ +D−)n0
±,m

dPb,m(t)

dt
= −Pb,m(t) +

e2
DL

Φ

[
1− β±
1 + β±

Φ±
2Tm

− 1− βDL
1 + βDL

ΦDLe±
2TmeDL

]
dT

dx
(S21)

Due to the much larger time scale in slow stage compare to that in fast stage, the initial condition

for Eq. S21 can be approximated as Pb(t = 0) = Pb,m,f = −ε0ε∞Em,f so that we have

Pb,m(t) = (−ε0ε∞Em,f − Pb,m(t =∞))e−t/τPb,s + Pb,m(t =∞) (S22)

The steady state polarization density field at ice slab’s middle plane is

Pb,m(t =∞) = − eDL
2eΦTm

[
1− β±
1− β±

Φ±eDL −
1− βDL
1− βDL

ΦDLe±

]
∆T

W
(S23)

Here, we notice the time scale for Pb,m(t) to reach the steady state is same to that of Em(t)

τPb,s = τE,s =
kBTm

(
ε0ε∞ +

e2DL
Φ

)
e2(D+ +D−)n0

±
=

(
1 +

e2
DL

Φε0ε∞

)
e2
±
e2

λ2
±

(D+ +D−)/2
(S24)

3 Literature values for defect properties in ice

The properties of point defects in ice reported in literature are presented in Table S1. The

corresponding temperature at which a property was reported is shown, except for that of activation

and migration energy, which is generally assumed to be insensitive to temperature.
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Table S1: Properties of defects in ice from different sources.

Value Note Ref. Value Note Ref.

µ+ 7.5×10−6 m2/(V·s) 273 K 1 µD negligible 253 K 2

µ+ 2.7×10−8 m2/(V·s) 273 K 3 Φ± 1.2±0.1 eV – 4

µ+ 9.2×10−8 m2/(V·s) 240 K 5 Φ± 0.96±0.13 eV – 1

µ+ 1×10−7 m2/(V·s) 253 K 2 Φ± 1 eV – 6

µ− 7.5×10−8∼−7 m2/(V·s) 263 K 1 Φ± >1.4 eV – 2

µ− 2.7×10−8 m2/(V·s) 240 K 5 ΦDL 0.68±0.04 eV – 4

µ− 3×10−8 m2/(V·s) 253 K 2 ΦDL 0.664 eV – 3

µ+/µ− 10.0 253 K 7 ΦDL 0.790±0.082 eV – 8

µL 1.16×10−8 m2/(V·s) 253 K 4 ΦD+ ∼ 0 eV – 8

µL 2×10−8 m2/(V·s) 263 K 9 ΦD+ -0.22 eV – 10

µL 5×10−8 m2/(V·s) 273 K 3 ΦDL
0.235±0.010 eV – 4

µL 2×10−8 m2/(V·s) 253 K 2 ΦDL
0.190±0.017 eV – 8

µD 6 µL 253 K 4 ΦDL
0.292 eV – 3

µD 6 µL 263 K 9 ΦDL
0.235 eV – 6
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