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1. Orbital-projected band structures for CoAs3, RhAs3, and RhSb3 compounds

To provide further insight into the electronic properties of CoAs3, RhAs3, and RhSb3 

compounds, we have also calculated the orbital-projected band structures for these compounds, 

as shown in Fig. S1. In this case, we focus on the d-orbitals of metal atoms and the p-orbitals of 

pnictgon atoms. It can be inferred that the band around the six-fold degenerate point is mainly 

contributed by the d-orbitals of metal atoms with Ag symmetry, which is important information 

for deducing the EBRs of these compounds.

Figure S1: Orbital-projected band structures for CoAs3 (a), RhAs3 (b), and RhSb3 (c) compounds. Red and blue 

colors correspond to the d-orbital of the Metals atoms and p orbital of pnictgon atoms, respectively. 

2. Tight-binding band structures for CoAs3, RhAs3, and RhSb3 compounds

In order to further explore the topological electronic properties of CoAs3, RhAs3, and RhSb3 

compounds, we have constructed tight-binding (TB) models 1, 2 based on the d-orbitals of metal 

atoms and p-orbitals of pnictgon atoms with MLWF method. We have plotted the TB band 

structures as shown in Fig. S2. The TB band structures match well with the DFT band structures 

shown in the main text, thus confirming the validity of our constructed TB models.



Figure S2: (a-c) Calculated TB band structures for CoAs3 (a), RhAs3 (b), and RhSb3 (c) without SOC. (d-f) 

Calculated TB band structures for CoAs3 (d), RhAs3 (e), and RhSb3 (f) with SOC.

3. Three-band   model  for the case without SOC𝑘 ⋅ 𝑝

In order to better understand the electronic properties of these binary Skutterudite 

compounds, we build up a three-band   models based on the theory of invariant:𝑘 ⋅ 𝑝

𝐷(𝑅)𝐻(𝑘)𝐷(𝑅) ‒ 1 =  𝐻(𝑅𝑘) (S1)

where R is the symmetry operation and  is its corresponding irreducible representation. 𝐷(𝑅)

Here we focus on the bands around the Γ point, inversion symmetry ( ), time-reversal symmetry 𝑃

( ), two-fold rotational symmetry ( , ), and mirror symmetry ( , ), 𝑇 𝐶2𝑖 𝑖 = 𝑥,  𝑦,  𝑧 𝑀𝑖 𝑖 = 𝑥,  𝑦,  𝑧

these symmetry operations read as the following:

,𝑇: (𝑘𝑥,  𝑘𝑦,  𝑘𝑧)→( ‒ 𝑘𝑥,  ‒ 𝑘𝑦,  ‒ 𝑘𝑧)

,𝑃: (𝑥,  𝑦,  𝑧)→( ‒ 𝑥, ‒ 𝑦, ‒ 𝑧)

,𝐶2𝑥: (𝑥,  𝑦,  𝑧)→(𝑥, ‒ 𝑦, ‒ 𝑧)
(S2)



,𝐶2𝑦:(𝑥,  𝑦,  𝑧)→( ‒ 𝑥,  𝑦, ‒ 𝑧)

,𝐶2𝑧:(𝑥,  𝑦,  𝑧)→( ‒ 𝑥, ‒ 𝑦,  𝑧)

,𝑀𝑥:(𝑥,  𝑦,  𝑧)→( ‒ 𝑥,  𝑦,  𝑧)

,𝑀𝑦:(𝑥,  𝑦,  𝑧)→(𝑥, ‒ 𝑦,  𝑧)

.𝑀𝑧:(𝑥,  𝑦,  𝑧)→(𝑥,  𝑦, ‒ 𝑧)

Then since irreps for the three bands is  we have the following representation matrices for Γ +
4 (3)

these symmetry operators:

𝓓( ) = K,𝑇

𝓓( ) = 𝑃 (1 0 0
0 1 0
0 0 1

 ),

𝓓( 2x) = 𝐶 ( ‒ 1 0 0
0 1 0
0 0 ‒ 1

 ),

𝓓( 2y) = ,𝐶 ( ‒ 1 0 0
0 ‒ 1 0
0 0 1

 )
𝓓( 2z) = 𝐶 (1 0 0

0 ‒ 1 0
0 0 ‒ 1

 ),

𝓓( x) = 𝑀 ( ‒ 1 0 0
0 1 0
0 0 ‒ 1

 ),

𝓓( y) = 𝑀 ( ‒ 1 0 0
0 ‒ 1 0
0 0 1

 ),

( z) = .𝑀 (1 0 0
0 ‒ 1 0
0 0 ‒ 1

 )

(S3)

Combining these symmetry operations and expand the Hamiltonian up to the second-order, we 

can have the following three-band  Hamiltonian:𝑘 ⋅ 𝑝

𝐻(𝑘) = 𝑐0 + 𝑐1(𝑘2
𝑥 +  𝑘2

𝑦 +  𝑘2
𝑧) +  𝑐2( 0 𝑘𝑥𝑘𝑧 𝑘𝑦𝑘𝑧

𝑘𝑥𝑘𝑧 0 𝑘𝑥𝑘𝑦
𝑘𝑦𝑘𝑧 𝑘𝑥𝑘𝑦 0

 ), (S4)

which can be expressed with a  unit matrix and three Gell-Mann matrices:3 × 3



𝐻(𝑘) = 𝑐0 + 𝑐1(𝑘2
𝑥 +  𝑘2

𝑦 +  𝑘2
𝑧)𝐼3 × 3

+  𝑐2𝑘𝑥𝑘𝑧𝜆1 +  𝑐2𝑘𝑦𝑘𝑧𝜆4 +  𝑐2𝑘𝑦𝑘𝑥𝜆6, (S5)

Where ,   and  are :𝜆1 𝜆4 𝜆6

𝜆1 =  (0 1 0
1 0 0
0 0 0

 ),

𝜆4 =  (0 0 1
0 0 0
1 0 0

 ),

𝜆6 =  (0 0 0
0 0 1
0 1 0

 ).

(S6)

Solving the eigenvalues of the Hamiltonian, we can know that when the three bands have a cross, 
there should be:

 = [𝐸 ‒ 𝑐0 ‒ 𝑐1(𝑘2
𝑥 +  𝑘2

𝑦 +  𝑘2
𝑧)](𝑘2

𝑥𝑘2
𝑧 +  𝑘2

𝑦𝑘2
𝑧 +  𝑘2

𝑦𝑘2
𝑥) + 2𝑘2

𝑥𝑘2
𝑦𝑘2

𝑧

,[𝐸 ‒ 𝑐0 ‒ 𝑐1(𝑘2
𝑥 +  𝑘2

𝑦 +  𝑘2
𝑧)]3 (S7)

obviously when , the three bands cross at . Since we focus only on the 𝑘𝑥,  𝑘𝑦,  𝑘𝑧 = 0 𝐸 = 𝑐0

energy bands around the Г point, the  term may be dropped, then the approximate 𝑘2
𝑥𝑘2

𝑦𝑘2
𝑧

eigenvalues of the three-band model may be written as:
𝐸1 = 𝑐0 + (𝑘2

𝑥 +  𝑘2
𝑦 +  𝑘2

𝑦)
 + 𝐸2 = 𝑐0 + (𝑘2

𝑥 +  𝑘2
𝑦 +  𝑘2

𝑦) (𝑘2
𝑥𝑘2

𝑧 +  𝑘2
𝑦𝑘2

𝑧 +  𝑘2
𝑦𝑘2

𝑥)
 - ,𝐸3 = 𝑐0 + (𝑘2

𝑥 +  𝑘2
𝑦 +  𝑘2

𝑦) (𝑘2
𝑥𝑘2

𝑧 +  𝑘2
𝑦𝑘2

𝑧 +  𝑘2
𝑦𝑘2

𝑥)
(S8)

Since the diagonal terms do not change the eigenvectors of the Hamiltonian, we can linearize the 
Hamiltonian as:

.𝐻(𝑘) = 𝑐2(𝑘𝑥𝑘𝑧𝜆1 +  𝑘𝑦𝑘𝑧𝜆4 +  𝑘𝑦𝑘𝑥𝜆6) (S9)

One can choose a sphere enclosing the = 0 point and the topological charge 𝓒 is calculated as:𝑘𝑘 

𝐶 =
1

2𝜋∮
𝑠

 Ω(𝑘) ⋅ ⅆ𝑆 =

= 0,

1
2𝜋

Σ𝑜𝑐𝑐∮
𝑠

 𝑖⟨𝑢𝑜𝑐𝑐(𝑘)|
∂

∂𝑘
|𝑢𝑜𝑐𝑐(𝑘)⟩

(S10)

 is the Berry curvature and  is the wave function for the occupied states Ω(𝑘) 𝑢𝑜𝑐𝑐(𝑘)

4. Four-band   model  for the case with SOC 𝑘 ⋅ 𝑝

In order to better understand the electronic properties with SOC, we need a four-band  𝑘 ⋅ 𝑝



model. In this SOC case, we still focus on the bands around the Γ point, considering the system 

has , ,  and  symmetries, and in the SOC case, the irreps for the four-bands 𝑃 𝑇 𝑀𝑖 (𝐶2𝑖, 𝑖 = 𝑥,  𝑦,  𝑧)

around the Γ point are  and , which means the basis are decoupled, then for simplicity, Γ̅6(2) Γ̅7(2)

we focus firstly on the two-bands with   irrep, then we have the following representation Γ̅6(2)

matrices for the symmetry operators:

𝓓( ) = 𝑖 K,𝑇 𝜎𝑦

𝓓( ) = ,𝑃 (1 0
0 1)

𝓓( 2x) =  = -𝑖𝐶 (1 0
0 1) 𝜎𝑥,

𝓓( 2y) =  = -𝑖𝐶 (0 ‒ 1
1 0 ) 𝜎𝑦,

𝓓( 2z) =  = -𝑖𝐶 ( ‒ 𝑖 0
0 𝑖 ) 𝜎𝑧,

𝓓( x) =  = -𝑖𝑀 ( 0 ‒ 𝑖
‒ 𝑖 0 ) 𝜎𝑥,

𝓓( y) =  = -𝑖𝑀 (0 ‒ 1
1 0 ) 𝜎𝑦,

𝓓( z) =  = -𝑖𝑀 ( ‒ 𝑖 0
0 𝑖 ) 𝜎𝑧.

(S11)

Combining these symmetry constraints and expand the Hamiltonian up to the second-order, we 

have the following  model:𝑘 ⋅ 𝑝

,𝐻𝑑𝑛(𝑘) = 𝑑𝑜 + 𝑑1(𝑘2
𝑥 +  𝑘2

𝑦 +  𝑘2
𝑧) + 𝑑2(𝑘𝑦𝑘𝑧𝜎𝑥 +  𝑘𝑥𝑘𝑧𝜎𝑦 +  𝑘𝑥𝑘𝑦𝜎𝑧) (S12)

The  representation matrices are listed as the following:Γ̅7(2)

𝓓( ) = 𝑖 K,𝑇  𝜎𝑦

𝓓( ) = ,𝑃 ( ‒ 1 0
0 ‒ 1)

𝓓( 2x) =    = 𝑖𝐶  (0 𝑖
𝑖 0) 𝜎𝑥,

𝓓( 2y) =  = 𝑖𝐶 ( 0 1
‒ 1 0) 𝜎𝑦,

𝓓( 2z) =  = 𝑖𝐶 ( 𝑖 0
0 ‒ 𝑖) 𝜎𝑧,

(S13)



𝓓( x) =  = 𝑖𝑀 (0 𝑖
𝑖 0) 𝜎𝑥,

𝓓( y) =  = 𝑖𝑀 ( 0 1
‒ 1 0) 𝜎𝑦,

𝓓( z) =  = 𝑖𝑀 ( 𝑖 0
0 ‒ 𝑖) 𝜎𝑧,

Then since the   representation matrices take the same form as in Eq. S10, but just with Γ̅7(2)

opposite values, then we can easily solve the  and couple them together as:𝐻𝑢𝑝(𝑘)

 =  = 𝐻(𝑘) (𝐻𝑢𝑝(𝑘) 0
0 𝐻𝑑𝑛(𝑘) ) ( ‒ 𝐻𝑢𝑝(𝑘) 0

0 ‒ 𝐻𝑑𝑛(𝑘) )
 = ,[𝑑𝑜 + 𝑑1(𝑘2

𝑥 +  𝑘2
𝑦 +  𝑘2

𝑧) + 𝑑2(𝑘𝑦𝑘𝑧𝜎𝑥 +  𝑘𝑥𝑘𝑧𝜎𝑦 +  𝑘𝑥𝑘𝑦𝜎𝑧)]𝜏𝑧
(S14)

the eigenvalues show that:

 ,𝐸 =  ± [𝑑𝑜 + 𝑑1(𝑘2
𝑥 +  𝑘2

𝑦 +  𝑘2
𝑧)] ± 𝑑2 (𝑘2

𝑥𝑘2
𝑧 +  𝑘2

𝑦𝑘2
𝑧 +  𝑘2

𝑦𝑘2
𝑥) (S15)

which gives us a quadratic four-fold Dirac point when  . Again since the diagonal terms 𝑑𝑜 = 0

have no influence on the eigenvectors, the model Hamiltonian can be reduced as:

 =  .𝐻(𝑘) (𝑘𝑦𝑘𝑧𝜎𝑥 +  𝑘𝑥𝑘𝑧𝜎𝑦 +  𝑘𝑥𝑘𝑦𝜎𝑧)𝜏𝑧 (S16)

Then we turn to the discussion of the topological charge; for simplicity, we still focus on the two 

down bands and take them as the occupied states, one can easily calculate the topological charge 

as

𝐶 =
1

2𝜋∮
𝑠

 Ω(𝑘) ⋅ ⅆ𝑆 =

= 0.

1
2𝜋

Σ𝑜𝑐𝑐∮
𝑠

 𝑖⟨𝑢𝑜𝑐𝑐(𝑘)|
∂

∂𝑘
|𝑢𝑜𝑐𝑐(𝑘)⟩

(S17)

The above results show that the topological charge is conserved as 0 for both cases without or 

with SOC.
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