Supporting Information for

Gas-Phase Synthesis and Deposition of Metal-bipyridine Complex

 $[M-bpy_{1-2}]^+$ (M=Ag, Cu)

Mengdi Guo,^{ab} Benben Huang,^{ab} Qiuhao Yi,^{ab} and Zhixun Luo*^a

a. Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for

Structural Chemistry of Unstable and Stable Species, Institute of Chemistry,

Chinese Academy of Sciences. Beijing 100190, China

b. University of Chinese Academy of Sciences, Beijing 100049, China

*Correspondence. Email: <u>zxluo@iccas.ac.cn</u>

Contents:

S1. Thermodynamics	1
S2. Charge distribution analysis	2
S3. Topological analysis	2

S1. Thermodynamics

		Tal	ble S1. DFT-calculated Energetics	
+	$C_{10}H_8N_2{}^0$	\rightarrow	$[Ag-C_{10}H_8N_2]^+$	$\Delta E = -3.062 \text{ eV}(1)$
+	$C_{10}H_8N_2{}^0$	\rightarrow	$[Ag\text{-}C_{10}H_8N_2]^+ + Ag^0$	$\Delta E = -1.238 \text{ eV} (2)$
+	$C_{10}H_8N_2{}^0$	\rightarrow	$[Ag\text{-}C_{10}H_8N_2]^+ + Ag_2{}^0$	$\Delta E = -0.060 \text{ eV} (3)$
+	$2C_{10}H_8N_2{}^0 \\$	\rightarrow	$[Ag-(C_{10}H_8N_2)_2]^+$	$\Delta \mathbf{E} = \mathbf{-5.074} \ \mathbf{eV} \ (4)$
+	$2C_{10}H_8N_2{}^0 \\$	\rightarrow	$[Ag-(C_{10}H_8N_2)_2]^+ + Ag^0$	$\Delta E = -3.250 \text{ eV} (5)$
+	$2C_{10}H_8N_2{}^0 \\$	\rightarrow	$[Ag-(C_{10}H_8N_2)_2]^+ + Ag_2^0$	$\Delta E = -2.072 \text{ eV} (6)$
+	$C_{10}H_8N_2{}^0$	\rightarrow	$[Cu\text{-}C_{10}H_8N_2]^+$	$\Delta E = -2.733 \text{ eV} (7)$
+	$C_{10}H_8N_2{}^0$	\rightarrow	$[Cu\text{-}C_{10}H_8N_2]^+ + Cu^0$	$\Delta E = -0.441 \text{ eV} (8)$
+	$C_{10}H_8N_2{}^0$	\rightarrow	$[Cu\text{-}C_{10}H_8N_2]^+ + Cu_2{}^0$	$\Delta E = 0.832 \text{ eV} (9)$
+	$2C_{10}H_8N_2{}^0 \\$	\rightarrow	$[Cu-(C_{10}H_8N_2)_2]^+$	$\Delta E = -5.264 \text{ eV} (10)$
+	$2C_{10}H_8N_2{}^0 \\$	\rightarrow	$[Cu-(C_{10}H_8N_2)_2]^+ + Cu^0$	$\Delta E = -2.971 \text{ eV} (11)$
+	$2C_{10}H_8N_2{}^0 \\$	\rightarrow	$[Cu-(C_{10}H_8N_2)_2]^+ + Cu_2^0$	$\Delta E = -1.698 \text{ eV} (12)$
+	$C_{10}H_8N_2{}^0$	\rightarrow	$Ag^{0} \hspace{0.5cm} + \hspace{0.5cm} C_{10}H_{8}N_{2}{}^{+}$	$\Delta E = 0.231 \text{ eV} (13)$
+	$C_{10}H_8N_2{}^0$	\rightarrow	$Cu^0 + C_{10}H_8N_2^+$	$\Delta E = -0.077 \text{ eV} (14)$
+	$C_{10}H_8N_2{}^0$	\rightarrow	$Ar^0 + C_{10}H_8N_2^+$	$\Delta E = -7.482 \text{ eV} (15)$
+	$C_{10}H_8N_2^+$	\rightarrow	$[Ag-C_{10}H_8N_2]^+$	$\Delta E = -3.293 \text{ eV} (16)$
+	$C_{10}H_{8}N_{2}{}^{+}$	\rightarrow	$[Cu\text{-}C_{10}H_8N_2]^+$	$\Delta E = -2.656 \text{ eV} (17)$
	+ + + + + + + + + + + + + + + + + + +	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Fig. S1 Structures and relative energies of $[Ag-bpy_{1-2}]^+$ and $[Cu-bpy_{1-2}]^+$ with numerical exchange of the N-C-C-N dihedral angles.

S2. Charge distribution analysis

		-	-	
	Mulliken	NPA	Hirshfeld	ADCH
[Ag-bpy] ⁺	0.664	0.822	0.697	0.849
[Ag-bpy ₂] ⁺	0.624	0.633	0.536	0.619
[Cu-bpy] ⁺	0.586	0.799	0.664	0.767
[Cu-bpy ₂] ⁺	0.520	0.568	0.525	0.475

 Table S2 Positive charge distribution on metal part.

S3. Topological analysis

Fig. S2 Topological analysis within the theory of atoms in molecules (AIM), the bond critical points (BCPs) are indicated by orange dots.

ВСР	p(BCP)	V(BCP)	G(BCP)	$\nabla 2\rho(BCP)$	λ1	λ2	λ3	$\eta(r)\!\!=\!\! \lambda_1 \!/\!\lambda_3$	$\epsilon(r) = [\lambda_1 / \lambda_2] - 1$
Ag1-N4	0.065	-0.084	0.076	0.270	-0.073	-0.069	0.411	0.177	0.058
Ag1-N9	0.065	-0.084	0.076	0.270	-0.073	-0.069	0.411	0.177	0.058
H14-H17	0.013	-0.0077	0.010	0.050	-0.012	-0.0071	0.070	0.176	0.690
Ag1-N4	0.058	-0.074	0.067	0.243	-0.062	-0.057	0.362	0.172	0.088
Ag1-N9	0.058	-0.074	0.067	0.243	-0.062	-0.057	0.362	0.172	0.088
Ag1-N24	0.058	-0.074	0.067	0.243	-0.062	-0.057	0.362	0.172	0.088
Ag1-N29	0.058	-0.074	0.067	0.243	-0.062	-0.057	0.362	0.172	0.088
H14-H17	0.012	-0.007	0.010	0.047	-	-0.0066	0.065	0.178	0.773
					0.0117				
H34-H37	0.0123	-0.0072	0.0095	0.047	-	-0.0066	0.066	0.178	0.773
					0.0117				
Cu1-N4	0.088	-0.138	0.127	0.464	-0.117	-0.112	0.693	0.169	0.045
Cu1-N9	0.088	-0.138	0.127	0.464	-0.117	-0.112	0.693	0.169	0.045
H14-H17	0.128	-0.742	0.974	0.483	-0.013	-0.008	0.070	0.190	0.625
Cu1-N4	0.076	-0.115	0.110	0.416	-0.096	-0.088	0.599	0.160	0.091
Cu1-N9	0.076	-0.115	0.110	0.416	-0.096	-0.088	0.599	0.160	0.091
Cu1-N24	0.076	-0.115	0.110	0.416	-0.096	-0.088	0.599	0.160	0.091
Cu1-N29	0.076	-0.115	0.110	0.416	-0.096	-0.088	0.599	0.160	0.091
H14-H17	0.012	-0.0067	0.0088	0.044	-	-0.0064	0.062	0.185	0.781
					0.0114				
H34-H37	0.0116	-0.0067	0.0088	0.044	-	-0.0064	0.0618	0.185	0.781
					0.0114				

Table S3 Energy density (H), electron density (ρ), potential energy density (V), Lagrangian kinetic energy (G), Laplacian of electron density ($\nabla 2\rho$), eta index (η), and bond ellipticity (ϵ r) of [M-bpy₁. ₂]⁺ (M=Ag, Cu).

ВСР	p(BCP)	V(BCP)	G(BCP)	∇ 2ρ(BCP)	λ1	λ2	λ3	$\eta(r)= \lambda 1 /\lambda 3$	$\epsilon(\mathbf{r})=[\lambda 1/\lambda 2]-1$
Ag1-N4	0.065	-0.084	0.076	0.270	-0.073	-0.069	0.411	0.177	0.058
Ag1-N9	0.065	-0.084	0.076	0.270	-0.073	-0.069	0.411	0.177	0.058
C2-N4	0.331	-0.744	0.263	-0.875	-0.693	-0.621	0.439	1.580	0.116
C7-N4	0.332	-0.791	0.298	-0.786	-0.691	-0.632	0.537	1.286	0.093
C2-C3	0.310	-0.423	0.103	-0.871	-0.643	-0.531	0.303	2.123	0.211
C7-C10	0.316	-0.436	0.105	-0.909	-0.661	-0.548	0.301	2.199	0.206
C3-C6	0.313	-0.430	0.103	-0.894	-0.646	-0.546	0.298	2.168	0.183
C6-C10	0.314	-0.431	0.103	-0.901	-0.648	-0.551	0.298	2.176	0.176
C2-C5	0.264	-0.289	0.061	-0.668	-0.537	-0.479	0.348	1.542	0.121
C5-N9	0.331	-0.744	0.263	-0.875	-0.693	-0.621	0.439	1.580	0.116
C12-N9	0.332	-0.791	0.298	-0.786	-0.691	-0.632	0.537	1.286	0.093
C5-C8	0.310	-0.423	0.103	-0.871	-0.643	-0.531	0.303	2.123	0.211
C12-C13	0.316	-0.436	0.105	-0.909	-0.661	-0.548	0.301	2.199	0.206
C8-C11	0.313	-0.430	0.103	-0.894	-0.646	-0.546	0.298	2.168	0.183
C11-C13	0.314	-0.431	0.103	-0.901	-0.648	-0.551	0.298	2.176	0.176
H14-H17	0.013	-0.0077	0.010	0.050	-0.012	-0.0071	0.070	0.176	0.690

 S3-1 Detailed topological analysis of [Ag-bpy]⁺.

Table S3-2 Detailed topological analysis of [Ag-bpy2]⁺.

ВСР	ρ(BCP)	V(BCP)	G(BCP)	∇ 2ρ(BCP)	λ1	λ2	λ3	$\eta(r) {=} \lambda 1 / \lambda 3$	$\epsilon(\mathbf{r})=[\lambda 1/\lambda 2]-1$
Ag1-N4	0.058	-0.074	0.067	0.243	-0.062	-0.057	0.362	0.172	0.088
Ag1-N9	0.058	-0.074	0.067	0.243	-0.062	-0.057	0.362	0.172	0.088
C2-N4	0.335	-0.750	0.262	-0.902	-0.704	-0.633	0.435	1.620	0.112
C7-N4	0.336	-0.792	0.293	-0.826	-0.703	-0.641	0.518	1.357	0.097
C2-C3	0.309	-0.421	0.102	-0.868	-0.642	-0.531	0.305	2.106	0.209
C7-C10	0.315	-0.434	0.104	-0.902	-0.659	-0.545	0.302	2.180	0.209
C3-C6	0.313	-0.430	0.104	-0.892	-0.646	-0.543	0.298	2.172	0.190
C6-C10	0.313	-0.429	0.103	-0.894	-0.646	-0.547	0.298	2.167	0.181
C2-C5	0.267	-0.295	0.621	-0.684	-0.546	-0.487	0.349	1.565	0.121
C5-N9	0.335	-0.750	0.262	-0.902	-0.704	-0.633	0.435	1.620	0.112

C12-N9	0.336	-0.792	0.293	-0.826	-0.703	-0.641	0.518	1.357	0.097
C5-C8	0.309	-0.421	0.102	-0.868	-0.642	-0.531	0.305	2.106	0.209
C12-C13	0.315	-0.434	0.104	-0.902	-0.659	-0.545	0.302	2.180	0.209
C8-C11	0.313	-0.430	0.104	-0.892	-0.646	-0.543	0.298	2.172	0.190
C11-C13	0.313	-0.429	0.103	-0.894	-0.646	-0.547	0.298	2.166	0.181
H14-H17	0.012	-0.007	0.010	0.047	-0.0117	-0.0066	0.065	0.178	0.773
Ag1-N24	0.058	-0.074	0.067	0.243	-0.062	-0.057	0.362	0.172	0.088
Ag1-N29	0.058	-0.074	0.067	0.243	-0.062	-0.057	0.362	0.172	0.088
C22-N24	0.335	-0.750	0.262	-0.902	-0.704	-0.633	0.435	1.620	0.112
C27-N24	0.336	-0.792	0.293	-0.826	-0.703	-0.641	0.518	1.357	0.097
C22-C23	0.309	-0.421	0.101	-0.868	-0.642	-0.531	0.305	2.106	0.209
C27-C30	0.315	-0.434	0.104	-0.902	-0.659	-0.545	0.302	2.180	0.209
C23-C26	0.313	-0.430	0.104	-0.892	-0.646	-0.543	0.298	2.172	0.190
C26-C30	0.313	-0.429	0.103	-0.894	-0.646	-0.547	0.298	2.166	0.181
C22-C25	0.267	-0.295	0.062	-0.684	-0.546	-0.487	0.349	1.565	0.121
C25-N29	0.335	-0.750	0.262	-0.902	-0.704	-0.633	0.435	1.620	0.112
C32-N29	0.336	-0.792	0.293	-0.826	-0.703	-0.641	0.518	1.357	0.097
C25-C28	0.309	-0.421	0.102	-0.868	-0.642	-0.531	0.305	2.106	0.209
C32-C33	0.315	-0.434	0.104	-0.902	-0.659	-0.545	0.302	2.180	0.209
C28-C31	0.313	-0.430	0.104	-0.892	-0.646	-0.543	0.298	2.172	0.190
C31-C33	0.313	-0.429	0.103	-0.894	-0.646	-0.547	0.298	2.166	0.181
H34-H37	0.0123	-0.0072	0.0095	0.047	-0.0117	-0.0066	0.066	0.178	0.773

Table S3-3 Detailed topological analysis of [Cu-bpy]⁺.

	able 55-5 Detailed topological analysis of [Cu-opy] .													
ВСР	p(BCP)	V(BCP)	G(BCP)	∇ 2ρ(BCP)	λ1	λ2	λ3	$\eta(r)\!\!=\!\! \lambda 1 /\lambda 3$	$\epsilon(\mathbf{r})=[\lambda 1/\lambda 2]-1$					
Cu1-N4	0.088	-0.138	0.127	0.464	-0.117	-0.112	0.693	0.169	0.045					
Cu1-N9	0.088	-0.138	0.127	0.464	-0.117	-0.112	0.693	0.169	0.045					
C2-N4	0.328	-0.727	0.255	-0.873	-0.683	-0.610	0.420	1.626	0.120					
C7-N4	0.331	-0.794	0.301	-0.766	-0.687	-0.630	0.551	1.247	0.090					
C2-C3	0.311	-0.428	0.104	-0.880	-0.647	-0.533	0.300	2.153	0.214					
C7-C10	0.316	-0.437	0.105	-0.911	-0.662	-0.549	0.300	2.207	0.206					

C3-C6	0.312	-0.428	0.103	-0.891	-0.644	-0.545	0.299	2.157	0.182
C6-C10	0.314	-0.432	0.103	-0.902	-0.648	-0.551	0.298	2.179	0.176
C2-C5	0.264	-0.288	0.610	-0.664	-0.535	-0.476	0.347	1.543	0.124
C5-N9	0.328	-0.727	0.255	-0.873	-0.683	-0.610	0.420	1.626	0.120
C12-N9	0.331	-0.794	0.301	-0.766	-0.687	-0.630	0.551	1.247	0.090
C5-C8	0.311	-0.428	0.104	-0.880	-0.647	-0.533	0.300	2.153	0.214
C12-C13	0.316	-0.437	0.105	-0.911	-0.662	-0.549	0.300	2.207	0.206
C8-C11	0.312	-0.428	0.103	-0.891	-0.644	-0.545	0.299	2.157	0.182
C11-C13	0.314	-0.432	0.103	-0.902	-0.648	-0.551	0.298	2.179	0.176
H14-H17	0.128	-0.742	0.974	0.483	-0.013	-0.008	0.070	0.190	0.625

 Table S3-4 Detailed topological analysis of [Cu-bpy2]+.

ВСР	p(BCP)	V(BCP)	G(BCP)	∇ 2ρ(BCP)	λ1	λ2	λ3	$\eta(r)\!\!=\!\! \lambda 1 /\!\lambda 3$	$\epsilon(\mathbf{r})=[\lambda 1/\lambda 2]-1$		
Cu1-N4	0.076	-0.115	0.110	0.416	-0.096	-0.088	0.599	0.160	0.091		
Cu1-N9	0.076	-0.115	0.110	0.416	-0.096	-0.088	0.599	0.160	0.091		
C2-N4	0.332	-0.736	0.256	-0.898	-0.696	-0.624	0.421	1.652	0.115		
C7-N4	0.334	-0.789	0.292	-0.816	-0.699	-0.637	0.520	1.345	0.097		
C2-C3	0.310	-0.423	0.102	-0.874	-0.644	-0.533	0.303	2.127	0.208		
C7-C10	0.315	-0.435	0.104	-0.905	-0.660	-0.545	0.301	2.192	0.211		
C3-C6	0.313	-0.430	0.104	-0.890	-0.646	-0.542	0.297	2.171	0.192		
C6-C10	0.312	-0.428	0.102	-0.891	-0.644	-0.546	0.298	2.158	0.179		
C2-C5	0.270	-0.302	0.064	-0.697	-0.554	-0.490	0.347	1.596	0.131		
C5-N9	0.332	-0.736	0.256	-0.898	-0.696	-0.624	0.421	1.652	0.115		
C12-N9	0.334	-0.789	0.292	-0.816	-0.699	-0.637	0.520	1.345	0.097		
C5-C8	0.310	-0.423	0.102	-0.874	-0.644	-0.533	0.303	2.127	0.208		
C12-C13	0.315	-0.435	0.104	-0.905	-0.660	-0.545	0.301	2.192	0.211		
C8-C11	0.313	-0.430	0.104	-0.890	-0.646	-0.542	0.297	2.171	0.192		
C11-C13	0.312	-0.428	0.102	-0.891	-0.644	-0.546	0.298	2.158	0.179		
H14-H17	0.012	-0.0067	0.0088	0.044	-0.0114	-0.0064	0.062	0.185	0.781		
Cu1-N24	0.076	-0.115	0.110	0.416	-0.096	-0.088	0.599	0.160	0.091		
Cu1-N29	0.076	-0.115	0.110	0.416	-0.096	-0.088	0.599	0.160	0.091		

C22-N24	0.331	-0.736	0.256	-0.898	-0.696	-0.624	0.421	1.652	0.115
C27-N24	0.334	-0.789	0.292	-0.816	-0.699	-0.637	0.520	1.345	0.097
C22-C23	0.310	-0.423	0.102	-0.874	-0.644	-0.533	0.303	2.127	0.208
C27-C30	0.315	-0.435	0.104	-0.905	-0.660	-0.545	0.301	2.192	0.211
C23-C26	0.313	-0.430	0.104	-0.890	-0.646	-0.542	0.297	2.171	0.192
C26-C30	0.312	-0.428	0.102	-0.891	-0.644	-0.546	0.298	2.158	0.179
C22-C25	0.270	-0.302	0.064	-0.697	-0.554	-0.490	0.347	1.596	0.131
C25-N29	0.332	-0.736	0.256	-0.898	-0.696	-0.624	0.421	1.652	0.115
C32-N29	0.334	-0.789	0.292	-0.816	-0.699	-0.637	0.520	1.345	0.097
C25-C28	0.310	-0.423	0.102	-0.874	-0.644	-0.533	0.303	2.127	0.208
C32-C33	0.315	-0.435	0.104	-0.905	-0.660	-0.545	0.301	2.192	0.211
C28-C31	0.313	-0.430	0.104	-0.890	-0.646	-0.542	0.297	2.171	0.192
C31-C33	0.312	-0.428	0.102	-0.891	-0.644	-0.546	0.298	2.158	0.179
H34-H37	0.0116	-0.0067	0.0088	0.044	-0.0114	-0.0064	0.0618	0.185	0.781