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1. Theory: Pair Interaction Energy Decomposition Analysis (PIEDA) 

The first step of the FMO method entails dividing the molecule into suitable fragments (total 

N). For fragments unconnected by covalent bonds, the segregation is simple, however, if 

otherwise, electrons are assigned to fragments such that the electrons paired in a bond are not 

separated (demonstration with both types of system are given in later sections). Thereby the 

FMO calculation begins with separate Hamiltonians for N number of closed shell fragments. 

The Hamiltonian for the Ith fragment is as follows: 

𝐻𝐼 = ∑  

𝑛𝐼

𝑖

{−
1

2
𝛻𝑖

2 − ∑  

𝑎𝑙𝑙 𝑎𝑡𝑜𝑚𝑠

𝑠

𝑍𝑠

|𝑟𝑖 − 𝑅𝑠|
+ ∑  

𝑁

𝐽≠𝐼

∫ 𝑑𝑟′
𝜌𝐽(𝑟′)

|𝑟𝑖 − 𝑟′|
} + ∑  

𝑛𝐼

𝑖>𝑗

1

|𝑟𝑖 − 𝑟𝑗|
 . . . (1) 

where, nI  is the number of electrons in the fragment I, Zs is the nuclear charge of atom s, ρJ(r) 

is the electron density distribution of fragment J. The first term in HI is the kinetic energy of 

the electrons of Ith fragment, next is the attractive potential energy between electrons of Ith 

fragment and all the nuclei in the system, followed by the repulsive Coulomb potential 

between electrons of Ith fragment and that of the other fragments. The repulsive exchange 

energy is the last term, calculated over all electrons of the Ith fragment only. This fragment 

Hamiltonian differs from a Hartree Fock Hamiltonian by including the electrostatic potential 

from the electrons in the other fragments and the nuclear attractions from all the nuclei in the 

system. 

 Solution of the Schrödinger equation using this fragment Hamiltonian where the 

orbitals are localized within each fragment, affords the RHF energy of each fragment, 

𝐻𝐼𝛹𝐼 = 𝐸𝐼
′𝛹𝐼  . . . (2) 

Where, E'I is the uncorrelated electronic energy of fragment I in the electrostatic field of the 

other fragments. For correlated methods, the density matrix of each fragment in the 

electrostatic field of other fragments, obtained from the FMO-RHF calculation, is used for 



S4 
 

calculating the correlation energy for that particular fragment in any method of choice such as 

MP2, CC, DFT and so on. The total energy of the system, then, as calculated at the one-body 

FMO level (FMO1) is represented as a sum of the individual fragments. However, the FMO1 

energy is not very accurate in recovering the total energy of the system. A two-body FMO 

calculation (FMO2) where energy and density of fragment pairs are also evaluated in the 

electrostatic field of the other fragments, is more accurate. Hence the fragment pair 

Hamiltonian is written as, 

𝐻𝐼𝐽 = ∑  

𝑛𝐼+𝑛𝐽

𝑖

{−
1

2
𝛻𝑖

2 − ∑  

𝑎𝑙𝑙 𝑎𝑡𝑜𝑚𝑠

𝑠

𝑍𝑠

|𝑟𝑖 − 𝑟𝑠|
+ ∑  

𝑁

𝐾≠𝐼,𝐽

∫ 𝑑𝑟′
𝜌𝐾(𝑟′)

|𝑟𝑖 − 𝑟′|
} + ∑  

𝑛𝐼+𝑛𝐽

𝑖>𝑗

1

|𝑟𝑖 − 𝑟𝑗|
 . . . (3) 

where, I and J are the two fragments. The corresponding Schrödinger equation which allows 

one to solve for energy of every fragment pair IJ is, 

𝐻𝐼𝐽𝛹𝐼𝐽 = 𝐸𝐼𝐽
′ 𝛹𝐼𝐽 . . . (4) 

and the FMO2 total energy of the system is given by, 

𝐸𝐹𝑀𝑂2 = ∑  

𝑁

𝐼>𝐽

𝐸𝐼𝐽
′ − (𝑁 − 2) ∑  

𝑁

𝐼

𝐸𝐼
′ + ∑  

𝑎𝑙𝑙 𝑎𝑡𝑜𝑚𝑠

𝑠>𝑡

𝑍𝑠𝑍𝑡

|𝑟𝑠 − 𝑟𝑡|
 . . . (5) 

where, the last term is the nuclear repulsion energy between all the nuclei of the system. In 

our manuscript, we employ FMO2 energies everywhere. 

 The energy of any pair of fragments in the electrostatic field of all other fragments is 

obtained from the FMO calculation as shown in Eq. (4) along with the energy of each 

monomer fragment in the electrostatic field of other monomers as obtained from Eq. (2). 

Subtracting the constituent fragment energies from the energy of the fragment pair, leads to 

the pair interaction energy (PIE): 

𝛥𝐸𝐼𝐽
𝑖𝑛𝑡 = (𝐸𝐼𝐽

′ − 𝐸𝐼
′ − 𝐸𝐽

′) + 𝑇𝑟 (𝛥𝑫𝑰𝑱𝑽𝐼𝐽) + (𝐸𝐼𝐽
𝑐𝑜𝑟𝑟 − 𝐸𝐼

𝑐𝑜𝑟𝑟 − 𝐸𝐽
𝑐𝑜𝑟𝑟) ...(6) 



S5 
 

where E'I and EIJ' represent the monomer fragment and fragment pair RHF energies after 

subtracting the environment potentials VI and VIJ, respectively, i.e., EIJ' = EIJ – Tr(DIJVIJ) 

where EIJ is the total RHF energy of fragment pair IJ. DI and DIJ are the electron densities of 

monomer and dimer fragments respectively and EI
corr and EIJ

corr are the correlation energies of 

monomer and dimer fragments. 

 The interaction energy between each fragment pair is then divided into electrostatic 

(ΔEIJ
ES), exchange-repulsion (ΔEIJ

ES), charge transfer with higher order mixed terms 

(ΔEct+mix) and dispersion (ΔEIJ
DI) components using EDA formalism: 

𝛥𝐸𝐼𝐽
𝑖𝑛𝑡 = 𝛥𝐸𝐼𝐽

𝐸𝑆 + 𝛥𝐸𝐼𝐽
𝐸𝑋 + 𝛥𝐸𝐼𝐽

𝐶𝑇+𝑚𝑖𝑥 + 𝛥𝐸𝐼𝐽
𝐷𝐼 . . . (7) 

2. PIEDA Calculation: A Demonstration 

The input for PIEDA calculation in GAMESS is prepared using a GUI fu-suite. We choose 

one small peptide FGG-1141 as an example of an intramolecular system to demonstrate the 

step-by-step process.  

a) The xyz format of the molecule is opened in fu program: 

 

b) Click on ‘FMO’ tab, followed by ‘Fragment tools’ and then ‘Manual BDA setting’: 

                                                

(1) Valdes, H.; Pluháčková, K.; Pitoňák, M.; Řezáč, J. and Hobza, P. Phys. Chem. Chem. 

Phys., 2008, 10, 2747–2757. 
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c) Click on the atoms connecting the bond to be broken (highlighted in green in the figure 

below). The first atom to be selected becomes the bond dissociated atom (BDA): 

 

d) The fragments can be viewed by clicking the ‘FMO’ tab then selecting ‘Show’ followed by 

‘Paint Fragment’ 
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e) In order to prepare the input for gamess, click on ‘Add-on’ tab followed by ‘gamess-user.py’ 

from the menu. This will open up a dialogue box as shown below 

 

f) Select ‘FMO’ from the dropdown menu of Method, change charge or multiplicity as required, 

click on FU tab to get the coordinates from the molecule in the viewing window. Next, the 

wavefunction type can be selected followed by the basis set (in this case M06-2X and 6-

31G** respectively). Then click on the ‘Save’ tab to save the .inp file 
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3. Interaction Energies Calculated Using Espinosa’s Formalism and F-sSAPT 

The interaction energies between the substrate and 3,3'-fragments in our study were also 

evaluated using Espinosa formalism which uses the topological quantities derived from 

Atoms-in-Molecules analysis to evaluate the energies associated with each contact identified 

by AIM. Energies for various types of contact between two particular fragments were 

summed together (Table S1) and plotted against the PIEDA interaction energies for the same 

fragment pairs (Figure S1). In addition, Sherrill’s exchange-scaled functional group 

symmetry adapted perturbation theory (F-sSAPT) has been employed as well for comparison. 

Table S1. Estimated Strength of NCIs Between Fragment Pairs Calculated using PIEDA, 

Espinosa and F-sSAPT in kcal/mol. 

Fragment Pairs PIEDA Espinosa F-sSAPT 

TS-I-S-A -7.7 -8.3 -3.8 

TS-I-S-B -8.1 -7.6 -5.6 

TS-I-R-A -4.3 -1.4 -2.3 

TS-I-R-B -9.8 -6.9 -6.6 

TS-IIa-R-A -16.3 -37.2 1.0 

TS-IIa-R-B -16.3 -33.6 -0.8 

TS-IIa-S-A -16.3 -29.1 -1.2 

TS-IIa-S-B -18.8 -28.1 -0.7 

TS-IIb-R-A -19.3 -8.9 -6.8 

TS-IIb-R-B -22.3 -18.4 -8.6 

TS-IIb-S-A -13.8 -5.6 -6.9 

TS-IIb-S-B -30.8 -20.6 -9.1 



S9 
 

TS-IIIa-S-A -20.6 -15.5 -17.7 

TS-IIIa-S-B -4.5 -2.2 -4.6 

TS-IIIb-R-A -3.9 -0.4 -4.8 

TS-IIIb-R-B -23.6 -12.5 -20.8 

  

 The largest differences in the interaction energies between the three quantification 

methods used here are found in the case of reactions IIa and IIb. The Pearson’s correlation 

coefficient (R) is listed in Table S2 for all the reactions as well as after excluding reactions 

IIa and IIb. Notable improvement is evident in the R-values after the exclusion of said 

reactions, the best being RPIEDA-Espinosa = 0.93. However, F-sSAPT displays poor correlation 

with both PIEDA and Espinosa’s methods. This might be attributed to the fact that the 

exchange-scaling factor in F-sSAPT has been optimized to reproduce total interaction 

energies, which is proposed to have accuracy issues with the fragment-fragment interaction 

energies.2 Reactions IIa and IIb involve highly conjugated aromatic fragments as compared 

to the other reactions. The number of bonds involved in the coupled reaction coordinate is 5 

in reaction I, 4 in reactions IIIa and IIIb, whereas it is 7 in reactions IIa and IIb (excluding 

the O‒P‒O part of phosphate which is also involved in RC but common in all the TSs as 

shown in Scheme 1). It might lead to higher contribution of the exchange term than currently 

accounted for in both PIEDA and F-sSAPT methods, thus leading to a larger difference in the 

computed values.  

Table S2. Pearson’s Correlation Coefficient Between PIEDA Interaction Energies and 

Those Obtained from Additive Espinosa’s Formalism and F-sSAPT 

Correlation coefficient All reactions Excluding IIa and IIb 

RPIEDA-Espinosa 0.56 0.93 

RPIEDA-F-sSAPT 0.44 0.70 

REspinosa-F-sSAPT -0.29 0.58 

 

                                                

(2) http://forum.psicode.org/t/ssapt-scaling-term-and-f-sapt/1321/3, accessed on 04/05/2021. 

http://forum.psicode.org/t/ssapt-scaling-term-and-f-sapt/1321/3
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 The inconsistency of F-sSAPT results for reaction IIa might also be due to the general 

issues with the basis set of fluorine atom.3 Since SAPT0 has been reported to work best with 

jun-cc-pVDZ basis set,4 we also reevaluated the F-sSAPT results using the calendar basis set 

for all atoms in the case of reaction IIa. However, the interaction energies in TS-IIa-R-A, 

TS-IIa-R-B, TS-IIa-S-A, TS-IIa-S-B amount to 0.5, -0.9, -1.2, -1.4 kcal/mol respectively, 

which are at variance with the other methods. 

 The interaction energies for each contact type (i.e. C‒H‧‧‧O, C‒H‧‧‧π etc.) as obtained 

using the Espinosa formalism are summed together and compared in Figure S1. This allows 

us to evaluate the relative contribution of each type of interaction to the total. The C‒H‧‧‧O 

contacts offer significant percentage of the stabilization in TS-I-S whereas it is 

predominantly C‒H‧‧‧π in TS-I-R. It is interesting to note that in reaction IIa, the 

predominant stabilizing interactions are C‒F‧‧‧O and C‒H‧‧‧F (Figure S2(b) for Espinosa 

quantification), where the substituent is -(CF3)2C6H4 and C‒H‧‧‧π and lp(O)‧‧‧π with the 

anthryl substituent in reaction IIb. Further, for the methyl oxetane system, C‒H‧‧‧π appears to 

be significant and the strength decreases when the substrate is hydroxy oxetane. 

                                                

(3) (a) Hickey, A. L.; Rowley, C. N. J. Phys. Chem. A 2014, 118, 3678. (b) Jaszuński, M.; 

Świder, P.; Sauer, S. P. A. Mol. Phys. 2019, 117, 1469. (c) Siiskonen, A.; Priimagi, A. J. 

Mol. Model 2017, 23:50.  

(4) (a) Bakr, B. W.; Sherrill, C. D. Phys. Chem. Chem. Phys. 2016, 18, 10297. (b) Bakr, B. 

W.; Sherrill, C. D. Phys. Chem. Chem. Phys. 2018, 20, 18241. 
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a) 

b) 

 

 

 

 

 

 

 

Figure S1 continued… 
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c) 

d) 

Figure S1. The interaction energies between fragments of the stereocontrolling TSs of a) 

reaction I, b) reaction IIa c) reaction IIb, and, d) reaction IIIa and IIIb calculated using the 

Espinosa formalism segregated into types of interactions. 

 

4. Interaction Energies and Its Components Between Substrates and Catalyst Fragments 

as Calculated by F-sSAPT 

As a contemporary method which have been employed for evaluating intramolecular 

interactions in TSs, we have compiled the F-sSAPT data at the 6-31G** basis set for the 
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same systems. Although the quantities of interactions do not exactly match with PIEDA, the 

trend and relative contribution of energies remain similar in both methods. 

a) 

b) 

Figure S2 continued… 
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c) 

Figure S2. The interaction energy and its components between fragments of the 

stereocontrolling TSs of a) reaction I, b) reaction IIa and IIb, and, c) reaction IIIa and IIIb 

calculated using F-sSAPT/6-31G**. 

 

5. Intermolecular Interaction Energies in Model Systems 

a) C‒H‧‧‧O 

 

b) C‒H‧‧‧π 

 

c) O‒H‧‧‧π 

 

-1.3 (-0.7) 

-1.3 (-0.7) 

-1.6 (-1.1) 

-1.9 (-1.3) 

-4.2 (-3.3) 

-4.3 (-3.4) 

d) lp(O)‧‧‧π 

 

e) C‒F‧‧‧O 

 

f) C‒H‧‧‧F 

 

-4.7 (-2.9) 

-4.9 (-3.0) 

-3.1 (-0.4) 

-3.4 (-0.7) 

-2.3 (-0.6) 

-2.3 (-0.7) 

Figure S3. Model binary systems bound primarily through a) C‒H‧‧‧O, b) C‒H‧‧‧π, c) O‒
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H‧‧‧π, d) lp(O)‧‧‧π, e) C‒F‧‧‧O, and f) C‒H‧‧‧F interactions, which are shown using dotted 

lines. The distances are in Å and the interaction energies are in kcal/mol, calculated at the 

M06-2X/6-31G** level of theory (in black) and M06-2X-D3/6-31G** (in purple). The 

counterpoise corrected values are provided in parenthesis. 

 

Table S3. The Interaction Energies and Its Components Calculated using FMO2-PIEDA for 

Model Systems 

Interaction Type Level of theory Total Elst. Exch. Ect+mix Disp. 

a) C‒H‧‧‧O M06-2X/6-31G** -1.4 -0.9 1.0 -0.8 -0.7 

M06-2X-D3/6-31G** -2.0 -0.9 1.0 -0.8 -1.3 

b) C‒H‧‧‧π M06-2X/6-31G** -1.7 -0.7 3.1 -0.6 -3.5 

M06-2X-D3/6-31G** -4.3 -0.7 3.1 -0.6 -6.1 

c) O‒H‧‧‧π M06-2X/6-31G** -4.5 -3.3 3.5 -1.3 -3.3 

M06-2X-D3/6-31G** -7.1 -3.3 3.5 -1.3 -6.0 

d) lp(O)‧‧‧π M06-2X/6-31G** -5.1 -3.8 5.7 -1.4 -5.6 

M06-2X-D3/6-31G** -7.9 -3.8 5.7 -1.4 -8.4 

e) C‒F‧‧‧O M06-2X/6-31G** -3.1 -1.0 5.8 -2.2 -5.7 

M06-2X-D3/6-31G** -6.4 -1.0 5.8 -2.2 -9.0 

f) C‒H‧‧‧F M06-2X/6-31G** -2.3 -1.3 3.8 -2.0 -2.8 

M06-2X-D3/6-31G** -3.9 -1.3 3.8 -2.0 -4.4 

 

Table S4. A Comparison of the Total Interaction Energies (in kcal/mol) between the Catalyst 

(via its fragments A or B) and the Substrate in the TSs Calculated using the Respective 

Model Systems at M06-2X and M06-2X-D3 Levels of Theory (M3)a and the PIEDA 

Methods (M2). The BSSE corrected values are given in parenthesis 

type of 

interaction 

(i-q) 

no. of 

contacts 

(Ni-q) 

total interaction energy  

(M3) 

total interaction energy 

(PIEDA) (M2) 

M06-2X M06-2X-D3 M06-2X M06-2X-D3 

TS-I-S 

C‒H‧‧‧O 2 -2.6 (-1.4) -2.6 (-1.4) -2.8 -4.0 

lp(O)‧‧‧π 1 -4.7 (-2.9) -4.9 (-3.0) -5.1 -7.9 

C‒H‧‧‧ π 2 -3.2 (-2.2) -3.8 (-2.6) -3.4 -8.6 

Total: -10.5 (-6.5) -11.3 (-7.0) -11.3 -20.5 

TS-I-R 

lp(O)‧‧‧π 1 -4.7 (-2.9) -4.9 (-3.0) -5.1 -7.9 

C‒H‧‧‧ π 2 -3.2 (-2.2) -3.8 (-2.6) -3.4 -8.6 

Total: -7.9 (-5.1) -8.7 (-5.6) -8.5 -16.5 
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TS-IIa-R 

C‒H‧‧‧O 1 -1.3 (-0.7) -1.3 (-0.7) -1.4 -2.0 

lp(O)‧‧‧π 1 -4.7 (-2.9) -4.9 (-3.0) -5.1 -7.9 

C‒H‧‧‧ π 2 -3.2 (-2.2) -3.8 (-2.6) -3.4 -8.6 

C‒H‧‧‧F 6 -13.8 (-3.6) -13.8 (-4.2) -13.8 -23.4 

C‒F‧‧‧O 5 -5.2 (-0.7) -5.7 (-1.2) -5.2 -10.7 

Total: -28.2 (-10.1) -29.5 (-11.7) -28.9 -52.6 

TS-IIa-S 

C‒H‧‧‧O 1 -1.3 (-0.7) -1.3 (-0.7) -1.4 -2.0 

lp(O)‧‧‧π 2 -9.4 (-5.8) -9.8 (-6.0) -10.2 -15.8 

C‒H‧‧‧ π 1 -1.6 (-1.1) -1.9 (-1.3) -1.7 -4.3 

C‒H‧‧‧F 4 -9.2 (-2.4) -9.2 (-2.8) -9.2 -15.6 

C‒F‧‧‧O 4 -4.1 (-0.5) -4.5 (-0.9) -4.1 -8.5 

Total: -25.6 (-10.5) -26.7 (-11.7) -26.6 -46.2 

TS-IIb-R 

C‒H‧‧‧O 1 -1.3 (-0.7) -1.3 (-0.7) -1.4 -2.0 

C‒H‧‧‧ π 6 -9.6 (-6.6) -11.4 (-7.8) -10.2 -25.8 

Total: -10.9 (-7.3) -12.7 (-8.5) -11.6 -27.8 

TS-IIb-S 

lp(O)‧‧‧π 3 -14.1 (-8.7) -14.7 (-9.0) -15.3 -23.7 

C‒H‧‧‧ π 3 -4.8 (-3.3) -5.7 (-3.9) -5.1 -12.9 

Total: -18.9 (-12.0) -20.4 (-12.9) -20.4 -36.6 

TS-IIIa-S 

O‒H‧‧‧ π 1 -4.2 (-3.3) -4.3 (-3.4) -4.5 -7.1 

lp(O)‧‧‧π 1 -4.7 (-2.9) -4.9 (-3.0) -5.1 -7.9 

C‒H‧‧‧ π 3 -4.8 (-3.3) -5.7 (-3.9) -5.1 -12.9 

Total: -13.7 (-9.5) -14.9 (-10.3) -14.7 -27.9 

TS-IIIb-R 

O‒H‧‧‧ π 1 -4.2 (-3.3) -4.3 (-3.4) -4.5 -7.1 

lp(O)‧‧‧π 1 -4.7 (-2.9) -4.9 (-3.0) -5.1 -7.9 

C‒H‧‧‧ π 3 -4.8 (-3.3) -5.7 (-3.9) -5.1 -12.9 

Total: -13.7 (-9.5) -14.9 (-10.3) -14.7 -279 
a Basis set used is 6-31G**, the interaction energies in the respective model binary systems, 

bound primarily by one type of NCI (i, j, k, …), computed using the supermolecular approach 

(Figure S3) are summed up using Nii+Njj+ …+Nqq where i-q are individual interactions 

of each type and Ni-q is the number interactions of a given type. 

 

 

6. Probing the Potential Origin of High Charge Transfer and Exchange Energies Noticed 

in Reaction IIb  

In the case of reaction IIb, a notably higher charge transfer and exchange energies between 

3,3'-substituents of the catalyst and the substrate are identified. It is important to note that due 

to the convergence issues encountered during the calculation of the energies of the fragment 

pairs (as shown in the partition scheme in Scheme 1), the initial guess for the density matrix 
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of the fragments are chosen using the hybrid orbital projection and the RHF for each dimer, 

prior the DFT runs the TSs of reaction IIb. This approach is therefore different from the 

default method, where the initial guess density matrix of the fragment pair is taken as the sum 

of converged densities/orbitals of the monomers. 

 This might be the cause of high charge transfer and repulsive energies noted in 

reaction IIb, whilst the total interaction energies remain reasonable. These intramolecular 

energies, as evaluated through our FMO protocol, is compared with the corresponding values 

obtained using an alternative approach that uses a partition scheme to transform the problem 

to an intermolecular interaction energy, wherein the same method of constructing the guess 

orbitals for the dimers as in the intramolecular case was used. In the latter method, interaction 

energies between fragments with hydrogen capping (wherein the C‒C bond between the 3,3'-

substituents and the backbone of the catalyst is capped with a H atom) are estimated using a 

supermolecular approach (Figure S4).5,6,7  

                                                

(5) Wheeler, S. E.; Houk, K. N. Substituent Effects in the Benzene Dimer Are Due to Direct 

Interactions of the Substituents with the Unsubstituted Benzene. J. Am. Chem. Soc. 2008, 

130, 10854–10855. 

(6) Wheeler, S. E.; Bloom, J. W. G. Toward a More Complete Understanding of Noncovalent 

Interactions Involving Aromatic Rings. J. Phys. Chem. A 2014, 118, 6133–6147. 
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Figure S4. Illustration of how the H-capped fragments are generated in the case of reactions 

IIa and IIb 

 

 

Figure S5. Comparison of various components of the total interaction energies as obtained 

using PIEDA and H-capping (shown in parentheses) methods in the case of reactions IIa and 
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IIb. 

 It is evident from Figure S5 that the magnitude of the total interaction energies 

obtained using the H-capping method is generally higher by about 4 kcal/mol. Among the 

constituents, the dispersion energies given by the FMO as well as the H-capping methods in 

both reaction IIa and IIb are nearly the same, so are the charge transfer and repulsive 

exchange energies in the case of reaction IIa. This indicates that replacing the CPA backbone 

with a hydrogen atom does not significantly impact the dispersion energies in both the 

reactions, and on the charge transfer and exchange energies estimates for reaction IIa, where 

the substituent is relatively electron deficient. The major difference between the FMO and H-

capping methods is noted in the electrostatic energies, where the H-capped method generally 

yields a higher value (more negative). This prediction can be reconciled as the electron 

density on both fragments will be altered upon replacing the anionic CPA backbone by a 

capping hydrogen atom for evaluating the ‘intermolecular’ interactions between the 3,3'-

substituents of CPA and the substrate. With the anthryl fragment, the exchange and charge 

transfer energies calculated using H-capping display significant difference with that 

calculated using FMO. The repulsive interactions are expected to increase with an electron 

rich substituent such as an anthryl group, as opposed to when the 3,3' positions are occupied 

by 3,5-(CF3)2-C6H3 group. 

 In order to examine whether the initial guess density matrix of the fragment pairs is 

the cause of such high energies, two binary super systems; DEAD‧‧‧anthracene as well as 

DEAD‧‧‧pyrene, were optimized at the M06-2X/6-31G** level of theory. The FMO2 

calculations were performed on these systems by using the default initial guess densities. The 

data given in Table S5 reveals that the charge transfer and repulsive exchange energies in 

these intermolecular binary aggregates are more reasonable. However, these are still on the 

higher side than the corresponding energetic terms noted in the case of reaction IIa. Further, 
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to make sure that the charge transfer energies are not an artifact of the functional, the long 

range corrected CAM-B3LYP along with the D3 corrections is employed.8,9  The charge 

transfer and repulsive energies are found to be consistent between the CAM-B3LYP-D3 and 

the other functionals. 

 It is therefore clear that the initial guess of the density matrix for the dimer fragments 

is important. Once the solution to each fragment is achieved, the fragment pair densities are 

not self-consistently optimized in the FMO formalism. In spite of the overestimation of 

charge transfer and exchange energies due to the deficiency in the guess densities, our 

inference that the charge transfer makes a higher contribution to the interaction energy 

between DEAD and anthracene holds good. This could be verified by comparing the 

corresponding values as noted for the independent computations on optimized model binary 

complexes between DEAD and anthracene. A similar trend was also found in the case of 

pyrene and DEAD. 
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Table S5. The PIEDA Interaction Energies and Constituent Decomposed Energy Terms 

Calculated for a) Anthracene and b) Pyrene with DEAD Fragment at the M06-2X/6-31G**, 

M06-2X-D3/6-31G**, CAM-B3LYP/6-31G** and CAM-B3LYP-D3/6-31G** Level of 

Theories 

a)  b)  

 Level of theory Total Elst. Exch. Ect+mix Disp. 

a M06-2X/6-31G** -45.6 -34.5 49.7 -25.8 -35.0 

M06-2X-D3/6-31G** -64.9 -34.5 49.7 -25.8 -54.3 

CAM-B3LYP/6-31G** -34.9 -33.3 41.4 -29.3 -13.7 

CAM-B3LYP-D3/6-31G** -54.2 -33.3 41.4 -29.3 -33.0 

b M06-2X/6-31G** -41.9 -31.0 46.7 -18.8 -38.7 

M06-2X-D3/6-31G** -64.3 -31.0 46.7 -18.8 -61.2 

CAM-B3LYP/6-31G** -28.7 -29.9 37.8 -22.1 -14.5 

CAM-B3LYP-D3/6-31G** -51.1 -29.9 37.8 -22.1 -36.9 

 

7. Interaction Energies in Reaction IIa Involving CPA Backbone Fragment 

  

Figure S6. The PIEDA interaction energies and its components between the TS reactant 

fragment and CPA backbone in reaction IIa. 
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8. Topological Maps using Atoms In Molecules Approach 

 

 

TS-I-S TS-I-R 

  

TS-IIa-S TS-IIa-R 

Figure S7 continued… 
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TS-IIb-S TS-IIb-R 

 

 

TS-IIIa-S TS-IIIb-R 

Figure S7. The topological map of the TSs as per the AIM formalism. The red dots represent 

the (3,-1) bond critical points (bcps).  

 


